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welcome 
Thank you for purchasing the MEAP of Math for Programmers.  I’ve been a math enthusiast 
my whole life, and only accidentally stumbled into software engineering as a career.  I first 
taught myself how to code on a TI-84 graphing calculator, writing programs to do my high 
school math homework for me.  Ever since then I’ve been excited by how complementary the 
disciplines of math and programming can be.  I look forward to sharing what I’ve learned with 
you! 

Now more than ever, knowing some math can accelerate your career as a developer.  As 
evidence, look at the recent prevalence of the job title “Data Scientist,” and what people with 
this title get paid.  I joke with my coworkers about what a “Data Scientist” really is, but the 
best answer is probably someone who knows statistics, linear algebra, and calculus, and how 
to turn them into code.  Beyond data analysis, these fields of math are useful in graphics, 
game design, simulation, optimization, and many other software development domains. 

In this book, we’ll start by exploring vectors, which are the mathematical tool for 
representing multidimensional data.  Computer graphics in 2D and 3D are built with vectors, 
and you’ll learn how to render your own 3D animations using matrix transformations.  Part 1 
culminates by showing you how these geometric lessons extend to higher dimensions within 
the framework of linear algebra. 

Part 2 focuses on calculus, which is the study of continuous change.  You’ll learn that many 
of the laws of physics can be expressed in terms of calculus equations called differential 
equations.  By solving these in Python, you can create realistic simulations of the physical 
world. 

With a working knowledge of calculus and linear algebra, you’ll be ready to learn some of 
the math behind machine learning in Part 3.  Machine learning algorithms are often used to 
draw conclusions about vector data, and the “learning” is often accomplished using an 
operation from calculus called the gradient. 

With a title as broad as Math for Programmers, there’s more content than I’ll be able to 
cover.  I look forward to hearing your feedback on what I have included as well as what I 
haven’t.  Please post your questions and comments in the forum, and I will take them 
seriously to make this book as useful as possible.  Happy reading! 

—Paul Orland 

©Manning Publications Co. To comment go to liveBook

https://forums.manning.com/forums/math-for-programmers
https://forums.manning.com/forums/math-for-programmers


©Manning Publications Co.  To comment go to  liveBook  

brief contents 
1 Learning math with code 

PART 1: VECTORS AND GRAPHICS 

2 Drawing with 2D vectors 

3 Ascending to the 3D world 

4 Transforming vectors and graphics 

5 Computing transformations with matrices 

6 Generalizing to higher dimensions 

7 Solving systems of linear equations 

PART 2: CALCULUS AND PHYSICAL SIMULATION 

8 Understanding rates of change 

9 Simulating moving objects 

10 Working with symbolic expressions 

11 Simulating force fields 

12 Optimizing a physical system 

13 Analyzing sound waves with a Fourier series 

PART 3: MACHINE LEARNING APPLICATIONS 

14 Fitting functions to data 

15 Classifying data with logistic regression 

16 Training neural networks 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


©Manning Publications Co.  To comment go to  liveBook  

APPENDIXES: 

A   Getting set up with Python 

B   Python tips and tricks 

C   Loading and rendering 3D Models with OpenGL and PyGame 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

  
Learning math with code 

This chapter covers 

• Making money using mathematical ideas in software 
• Avoiding common pitfalls in learning math 
• Thinking like a programmer to understand math 
• Using Python as a powerful and extensible calculator 

Math is like baseball, or poetry, or fine wine. Some people are so fascinated by math that they 
devote their whole lives to it, while others feel like they just don’t get it. You’ve probably already 
been forced into one camp or another by twelve years of compulsory math education in school. 

What if we learned about fine wine in school like we learned math? I don’t think I’d like wine at 
all if I got lectured on grape varietals and fermentation techniques for an hour a day, five days 
a week. Maybe in such a world, I’d need to consume three or four glasses for homework as 
assigned by the teacher. Sometimes this would be a delicious educational experience, but 
sometimes I might not feel like getting loaded on a school night. My experience in math class 
went something like that, and it turned me off of the subject for a while. Like wine, mathematics 
is an acquired taste, and a daily grind of lectures and assignments is no way to refine one’s 
palate. 

It’s easy to think you’re either cut out for math or you aren’t. If you already believe in yourself, 
and you’re excited to start learning, that’s great! Otherwise, this chapter is designed for those 
less optimistic. Feeling intimidated by math is so common, it has a name: math anxiety. I hope 
to dispel any anxiety you might have and show you that math can be a stimulating experience 
rather than a frightening one. All you need are the right tools and the right mindset. 
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The main tool for learning in this book is the Python programming language. I’m guessing that 
when you learned math in high school, you saw it written on the blackboard and not in computer 
code. That’s a shame, because a high-level programming language is far more powerful than a 
blackboard and far more versatile than whatever overpriced calculator you may have used. An 
advantage of meeting math in code is that the ideas have to be precise enough for a computer 
to understand, and there’s never any hand-waving about what new symbols mean.  

As with learning any new subject, the best way to set yourself up for success is to want to learn. 
There are plenty of good reasons for this. You could be intrigued by the beauty of mathematical 
concepts or enjoy the “brain-teaser” feel of math problems. Maybe there’s an app or game that 
you dream of building, and you need to write some mathematical code to make it work. For 
now, I’ll focus on a more pragmatic kind of motivation—solving mathematical problems with 
software can make you a lot of money. 

1.1 Solving lucrative problems with math and software 
A classic criticism you hear in high school math class is, “When am I ever going to use this stuff 
in real life?” Our teachers told us that math would help us succeed professionally and make 
money. I think they were right about this, even though their examples were off. For instance, I 
don’t calculate my compounding bank interest by hand (and neither does my bank). Maybe if I 
became a construction site surveyor as my trigonometry teacher suggested, I’d be using sines 
and cosines every day to earn my paycheck. 

It turns out the “real world” applications from high school textbooks aren’t that useful. Still, 
there are real applications of math out there, and some of them are mind-bogglingly lucrative. 
Many are solved by translating the right mathematical idea into usable software. I’ll share some 
of my favorite examples. 

1.1.1 Predicting financial market movements 

We’ve all heard legends of stock traders making millions of dollars by buying and selling the 
right stocks at the right time. Based on the movies I’ve seen, I always picture a trader as a 
middle-aged man in a suit yelling at his broker over a cell phone while driving around in a sports 
car. Maybe this stereotype was spot-on at one point, but the situation is different today.  

Holed up in back offices of skyscrapers all over Manhattan are thousands of people called quants. 
Quants, otherwise known as quantitative analysts, design mathematical algorithms to 
automatically trade stocks and earn a profit. They don’t wear suits and they don’t spend time 
yelling on their cell phones, but I’m sure many of them own very nice sports cars. 

So how does a quant write a program that automatically makes money? The best answers to 
that question are closely-guarded trade secrets, but you can be sure they involve a lot of math. 
We can look at a brief example to get a sense of how an automated trading strategy might work. 
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Stocks are types of financial assets that represent ownership stakes in companies. When the 
market perceives a company is doing well, its stock price goes up: buying the stock becomes 
more costly and selling it becomes more rewarding. Stock prices change erratically and in real 
time. Figure 1.1 shows how a graph of a stock price over a day of trading might look. 

 
Figure 1.1: Typical graph of a stock price over time 

If you bought a thousand shares of this stock for $24 around minute 100 and sold them for $38 
at minute 400, you would make $14,000 for the day. Not bad! The challenge is that you’d have 
to know in advance that the stock was going up, and that minutes 100 and 400 were the best 
times to buy and sell, respectively. It may not be possible to predict the exact lowest or highest 
price points, but maybe you can find relatively good times to buy and sell throughout the day. 
Let’s look at a way to do this mathematically.  

We could measure whether the stock is going up or down by finding a line of “best fit” that 
approximately follows the direction the price is moving. This process is called linear regression, 
and we cover it in part 3 of this book. Based on the variability of data, we can calculate two 
more lines above and below the “best fit” line that show the region in which the price is wobbling 
up and down. Overlaid on the price graph, figure 1.2 shows that the lines follow the trend nicely. 
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Figure 1.2: Using linear regression to identify a trend in changing stock prices 

With a mathematical understanding of the price movement, we can then write code to 
automatically buy when the price is going through a low fluctuation relative to its trend and to 
sell when the price goes back up. Specifically, our program could connect to the stock exchange 
over the network and buy 100 shares when the price crosses the bottom line and sell 100 shares 
when the price crosses the top line. Figure 1.3 illustrates one such profitable trade: buying at 
around $27.80 and selling at around $32.60 makes you $480 in an hour. 

 
Figure 1.3: Buying and selling according to our rules-based software to make a profit  
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I don’t claim I’ve shown you a complete or lucrative strategy here, but the point is that with the 
right mathematical model, you can make a profit automatically. At this moment, some unknown 
number of programs are building and updating models measuring the predicted trend of stocks 
and other financial instruments. If you write such a program, you can enjoy some leisure time 
while it makes money for you! 

1.1.2 Finding a good deal 

Maybe you don’t have deep enough pockets to consider risky stock trading. Math can still help 
you make and save money in other transactions like buying a used car, for example. New cars 
are easy-to-understand commodities. If two dealers are selling the same car, you obviously 
want to buy from the dealer that has the lowest cost. But used cars have more numbers 
associated with them: an asking price as well as mileage and model year. You can even use the 
duration that a particular used car has been on the market to assess its quality: the longer the 
duration, the more suspicious you might be. 

In mathematics, objects you can describe with ordered lists of numbers are called vectors, and 
there is a whole field (called linear algebra) dedicated to studying them. For example, a used 
car might correspond to a four-dimensional vector, meaning a four-tuple of numbers: 

(2015, 41429, 22.27, 16980) 

These numbers represent the model year, mileage, days on the market, and asking price, 
respectively. A friend of mine runs a site called CarGraph.com that aggregates data on used 
cars for sale. At the time of writing, it shows 101 Toyota Priuses for sale, and it gives some or 
all of these four pieces of data for each one. The site also lives up to its name and visually 
presents the data in a graph (figure 1.4). It’s hard to visualize four-dimensional objects, but if 
you choose two of the dimensions like price and mileage, you can graph them as points on a 
scatter plot. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 1.4: A graph of price vs. mileage for used Priuses from CarGraph.com 

We might be interested in drawing a trend line here too. Every point on this graph represents 
someone’s opinion of a fair price, so the trend line would aggregate these opinions together into 
a more reliable price at any mileage. In figure 1.5, I decided to fit to an exponential decline 
curve rather than a line, and I omitted some of the nearly new cars selling for below retail price. 

 
Figure 1.5: Fitting an exponential decline curve to price vs. mileage data for used Toyota Priuses 
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To make the numbers more manageable, I converted the mileage values to tens of thousands 
of miles, so a mileage of 5 represents 50,000 miles. Calling p the price and m the mileage, the 
equation for the curve of best fit is as follows: 

 
Equation 1.1 for the best fit curve 

Equation 1.1 shows that the best fit price is $26,500 times 0.905 raised to the power of the 
mileage. Plugging the values into the equation, I find that if my budget is $10,000, then I should 
buy a Prius with about 97,000 miles on it (figure 1.6). If I believe the curve indicates a fair 
price, then cars below the line should typically be good deals. 

 
Figure 1.6: Finding the mileage I should expect on a used Prius for my $10,000 budget 

But we can learn more from equation 1.1 than just how to find a good deal. It tells a story about 
how cars depreciate. The first number in the equation is $26,500, which is the exponential 
function’s understanding of the price at zero mileage. This is an impressively close match to the 
retail price of a new Prius. If we use a line of best fit, it implies a Prius loses a fixed amount of 
value with each mile driven. This exponential function says, instead, that it loses a fixed 
percentage of its value with each mile driven. After driving 10,000 miles, a Prius is only worth 
0.905 or 90.5% of its original price according to this equation. After 50,000 miles, we multiply 
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its price by a factor of (0.905)5 = 0.607. That tells us that it’s worth about 61% of what it was 
originally. 

To make the graph in figure 1.6, I implemented a price(mileage) function in Python, which 
takes a mileage as an input (measured in 10,000s of miles) and returns the best-fit price as an 
output. Calculating price(0) − price(5) and price(5) − price(10) tells me that the 
first and second 50,000 miles driven cost about $10,000 and $6,300, respectively.  

If we use a line of best fit instead of an exponential curve, it implies that the car depreciated at 
a fixed rate of $0.10 per mile. This suggests that every 50,000 miles of driving leads to the 
same depreciation of $5,000. Conventional wisdom says that the first miles you drive a new car 
are the most expensive, so the exponential function (equation 1.1) agrees with this, while a 
linear model does not. 

Remember, this is only a two-dimensional analysis. We only built a mathematical model to relate 
two of the four numerical dimensions describing each car. In part 1, you learn more about 
vectors of various dimensions and how to manipulate higher-dimensional data. In part 2, we 
cover different kinds of functions like linear functions and exponential functions, and we compare 
them by analyzing their rates of change. Finally, in part 3, we look at how to build mathematical 
models that incorporate all the dimensions of a data set to give us a more accurate picture. 

1.1.3 Building 3D graphics and animations 

Many of the most famous and financially successful software projects deal with multi-
dimensional data, specifically three-dimensional or 3D data. Here I’m thinking of 3D animated 
movies and 3D video games that gross in the billions of dollars. For example, Pixar’s 3D 
animation software has helped them rake in over $13 billion at box offices. Activision’s Call of 
Duty franchise of 3D action games has earned over $16 billion, and Rockstar’s Grand Theft Auto 
V alone has brought in $6 billion. 

Every one of these acclaimed projects is based on an understanding of how to do computations 
with 3D vectors or triples of numbers of the form v = (x, y, z). A triple of numbers is sufficient 
to locate a point in 3D space relative to a reference point called the origin. Figure 1.7 shows 
how each of the three numbers tells you how far to go in one of three perpendicular directions. 
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Figure 1.7: Labeling a point in 3D with a vector of three numbers, x, y, and z 

Any 3D object from a clownfish in Finding Nemo to an aircraft carrier in Call of Duty can be 
defined for a computer as a collection of 3D vectors. In code, each of these objects looks like a 
list of triples of float values. With three triples of floats, we have three points in space that 
can define a triangle (figure 1.8). For instance, 

triangle = [(2.3,1.1,0.9), (4.5,3.3,2.0), (1.0,3.5,3.9)] 

 
Figure 1.8: Building a 3D triangle using a triple of float values for each of its corners 

Combining many triangles, you can define the surface of a 3D object. Using more, smaller 
triangles, you can even make the result look smooth. Figure 1.9 shows six renderings of a 3D 
sphere using an increasing number of smaller and smaller triangles. 
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Figure 1.9: Three-dimensional (3D) spheres built out of the specified number of triangles. 

In chapters 3 and 4, you learn how to use 3D vector math to turn 3D models into shaded 2D 
images like the ones in figure 1.9. You also need to make your 3D models smooth to make them 
realistic in a game or movie, and you need them to move and change in realistic ways. This 
means that your objects should obey the laws of physics, which are also expressed in terms of 
3D vectors. 

Suppose you’re a programmer for Grand Theft Auto V and want to enable a basic use case like 
shooting a bazooka at a helicopter. A projectile coming out of a bazooka starts at the 
protagonist’s location and then its position changes over time. You can use numeric subscripts 
to label the various positions it has over its flight, starting with v0 = (x0, y0, z0). As time elapses, 
the projectile arrives at new positions labeled by vectors v1 = (x1, y1, z1), v2 = (x2, y2, z2), and 
so on. The rates of change for the x, y, and z values are decided by the direction and speed of 
the bazooka. Moreover, the rates can change over time—the projectile increases its z position 
at a decreasing rate because of the continuous downward pull of gravity (figure 1.10). 

 
Figure 1.10: The position vector of the projectile changes over time due to its initial speed and the pull of 
gravity. 
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As any experienced action gamer will tell you, you need to aim slightly above the helicopter to 
hit it! To simulate physics, you have to know how forces affect objects and cause continuous 
change over time. The math of continuous change is called calculus, and the laws of physics are 
usually expressed in terms of objects from calculus called differential equations. You learn how 
to animate 3D objects in chapters 4 and 5, and then how to simulate physics using ideas from 
calculus in part 2. 

1.1.4 Modeling the physical world 

My claim that mathematical software produces real financial value isn’t just speculation, I’ve 
seen the value in my own career. In 2013, I founded a company called Tachyus that builds 
software to optimize oil and gas production. Our software uses mathematical models to 
understand the flow of oil and gas underground to help producers extract it more efficiently and 
profitably. Using the insight it generates, our customers have achieved millions of dollars a year 
in cost savings and production increases.  

To explain how our software works, you need to know a few pieces of oil terminology. Holes 
called wells are drilled into the ground until they reach the target layer of porous (sponge-like) 
rock containing oil. This layer of oil-rich rock underground is called a reservoir. Oil is pumped to 
the surface and is then sold to refiners who convert it into the products we use every day. A 
schematic of an oilfield (not to scale!) is shown in figure 1.11. 

 
Figure 1.11: A schematic diagram of an oilfield 

Over the past few years, the price of oil has varied significantly, but for our purposes, let’s say 
it’s worth $50 a barrel, where a barrel is a unit of volume equal to 42 gallons or about 159 liters. 
If by drilling wells and pumping effectively, a company is able to extract 1,000 barrels of oil per 
day (the volume of a few backyard swimming pools), it will have annual revenues in the tens of 
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millions of dollars. Even a few percentage points of increased efficiency can mean a sizable 
amount of money. 

The underlying question is what’s going on underground: where is the oil now and how is it 
moving? This is a complicated question, but it can also be answered by solving differential 
equations. The changing quantities here are not positions of a projectile, but rather locations, 
pressures, and flow rates of fluids underground. Fluid flow rate is a special kind of function that 
returns a vector, called a vector field. This means that fluid can flow at any rate in any three-
dimensional direction, and that direction and rate can vary across different locations within the 
reservoir. 

With our best guess for some of these parameters, we can use a differential equation called 
Darcy's law to predict flow rate of liquid through a porous rock medium like sandstone. Figure 
1.12 shows Darcy’s law, but don’t worry if some symbols are unfamiliar! The function named q 
representing flow rate is bold to indicate it returns a vector value. 

 
Figure 1.12: Darcy’s law annotated for a physics equation, governing how fluid flows within a porous rock. 

The most important part of this equation is the symbol that looks like an upside-down triangle, 
which represents the gradient operator in vector calculus. The gradient of the pressure function 
p(x, y, z) at a given spatial point (x, y, z) is the 3D vector q(x, y, z), indicating the direction of 
increasing pressure and the rate of increase in pressure at that point. The negative sign tells us 
that the 3D vector of flow rate is in the opposite direction. This equation states, in mathematical 
terms, that fluid flows from areas of high pressure to areas of low pressure. 

Negative gradients are common in the laws of physics. One way to think of this is that nature is 
always seeking to move toward lower potential energy states. The potential energy of a ball on 
a hill depends on the altitude h of the hill at any lateral point x. If the height of a hill is given by 
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a function h(x), the gradient points uphill while the ball rolls in the exact opposite direction 
(figure 1.13). 

 
Figure 1.13: The positive gradient points uphill, while the negative gradient points downhill. 

In chapter 11, you learn how to calculate gradients. There, I show you how to apply gradients 
to simulate physics and also to solve other mathematical problems. The gradient happens to be 
one of the most important mathematical concepts in machine learning as well. 

I hope these examples have been more compelling and realistic than the real-world applications 
you heard in high school math class. Maybe, at this point, you’re convinced these math concepts 
are worth learning, but you’re worried that they might be too difficult. It’s true that learning 
math can be hard, especially on your own. To make it as smooth as possible, let’s talk about 
some of the pitfalls you can face as a math student and how I’ll help you avoid them in this 
book. 

1.2 How not to learn math 
There are plenty of math books out there, but not all of them are equally useful. I have quite a 
few programmer friends who tried to learn mathematical concepts like the ones in the previous 
section, either motivated by intellectual curiosity or by career ambitions. When they use 
traditional math textbooks as their main resource, they often get stuck and give up. Here’s what 
a typical unsuccessful math-learning story looks like. 
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1.2.1 Jane wants to learn some math 

My (fictional) friend Jane is a full-stack web developer working at a medium-sized tech company 
in San Francisco. In college, Jane didn't study computer science or any mathematical subjects 
in depth, and she started her career as a product manager. Over the last ten years, she picked 
up coding in Python and JavaScript and was able to transition into software engineering. Now, 
at her new job, she is one of the most capable programmers on the team, able to build the 
databases, web services, and user interfaces required to deliver important new features to 
customers. Clearly, she’s pretty smart! 

Jane realizes that learning data science could help her design and implement better features at 
work, using data to improve the experience for her customers. Most days on the train to work, 
Jane reads blogs and articles about new technologies, and recently, she's been amazed by a few 
about a topic called “deep learning.” One article talks about Google's AlphaGo, powered by deep 
learning, which beat the top-ranked human players in the world in a board game. Another article 
showed stunning impressionist paintings generated from ordinary images, again using a deep 
learning system.  

After reading these articles, Jane overheard that her friend-of-a-friend Marcus got a deep 
learning research job at a big tech company. Marcus supposedly gets paid over $400,000 a year 
in salary and stock. Thinking about the next step in her career, what more could Jane want than 
to work on a fascinating and lucrative problem? 

Jane did some research and found an authoritative (and free!) resource online: the book Deep 
Learning by Goodfellow, et al., (MIT Press, 2016). The introduction read much like the technical 
blog posts she was used to and got her even more excited about learning the topic. But as she 
kept reading, the content of the book got harder. The first chapter covered the required math 
concepts and introduced a lot of terminology and notation that Jane had never seen. She 
skimmed it and tried to get on to the meat of the book, but it continued to get more difficult. 

Jane decided she needed to pause her study of AI and deep learning until she learned some 
math. Fortunately, the math chapter of Deep Learning listed a reference on linear algebra for 
students who had never seen the topic before. She tracked down this textbook, Linear Algebra 
by Georgi Shilov (Dover, 1977), and discovered that it was 400 pages long and equally as dense 
as the Deep Learning book. 

After spending an afternoon reading abstruse theorems about concepts like number fields, 
determinants, and cofactors, she called it quits. She had no idea how these concepts were going 
to help her write a program to win a board game or to generate artwork, and she no longer 
cared to spend dozens of hours with this dry material to find out. 

Jane and I met to catch up over a cup of coffee. She told me about her struggles reading real 
AI literature because she didn't know linear algebra. Recently, I’m hearing a lot of the same 
form of lamentation:  

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

“I'm trying to read about [new technology] but it seems like I need to learn 
[math topic] first.” 

Her approach was admirable: she tracked down the best resource for the subject she wanted to 
learn and sought out resources for prerequisites she was missing. But in taking that approach 
to its logical conclusion, she found herself in a nauseating “depth-first” search of technical 
literature.  

1.2.2 Slogging through math textbooks 

College-level math books like the linear algebra book Jane picked up tend to be very formulaic. 
Every section follows the same format: it defines some new terminology, states some facts 
(called theorems) using that terminology, and then proves that those theorems are true. 

This sounds like a good, logical order: you introduce the concept you’re talking about, state 
some conclusions that can be drawn, and then justify them. Then why is it so hard to read 
advanced mathematical textbooks? 

The problem is that this is not how math is actually created. When you’re coming up with new 
mathematical ideas, there can be a long period of experimentation before you even find the 
right definitions. I think most professional mathematicians would describe their steps like this: 

1. Invent a game. For example, start playing with some mathematical objects by trying to 
list all of them, find patterns among them, or find one with a particular property. 

2. Form some conjectures. Speculate about some general facts you can state about your 
game and, at least, convince yourself these must be true. 

3. Develop some precise language to describe your game and your conjectures. After all, 
your conjectures won’t mean anything until you can communicate them. 

4. Finally, with some determination and luck, find a proof for your conjecture, showing why 
it needs to be true. 

The main lesson to learn from this process is that you should start by thinking about big ideas, 
and the formalism can wait. Once you have a rough idea of how the math works, the vocabulary 
and notation become an asset for you rather than a distraction. Math textbooks usually work in 
the opposite order, so I recommend using textbooks as references rather than as introductions 
to new subjects.   

Instead of reading traditional textbooks, the best way to learn math is to explore ideas and draw 
your own conclusions. However, you don’t have enough hours in the day to reinvent everything 
yourself. What is the right balance to strike? I’ll give you my humble opinion, which guides how 
I’ve written this non-traditional book about math. 

1.3 Using your well-trained left brain 
This book is designed for people who are either experienced programmers or for those who are 
excited to learn programming as they work through it. It’s great to write about math for an 
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audience of programmers, because if you can write code, you’ve already trained your analytical 
left brain. I think the best way to learn math is with the help of a high-level programming 
language, and I predict that in the not-so-distant future, this will be the norm in math 
classrooms. 

There are several specific ways programmers like you are well equipped to learn math. I list 
those here, not only to flatter you, but also to remind you what skills you already have that you 
can lean on in your mathematical studies. 

1.3.1 Using a formal language 

One of the first hard lessons you learn in programming is that you can’t write your code like you 
write simple English. If your spelling or grammar is slightly off when writing a note to a friend, 
they can probably still understand what you’re trying to say. But any syntactic error or 
misspelled identifier in code causes your program to fail. In some languages, even forgetting a 
semicolon at the end of an otherwise correct statement prevents the program from running. As 
another example, consider the two statements: 

x = 5 
5 = x 

I could read either of these to mean that the symbol x has the value 5. But that’s not exactly 
what either of these means in Python, and in fact, only the first one is correct. The Python 
statement x = 5 is an instruction to set the variable x to have the value 5. On the other hand, 
you can’t set the number 5 to have the value x. This may seem pedantic, but you need to know 
it to write a correct program. 

Another example that trips up novice programmers (and experienced ones as well!) is reference 
equality. If you define a new Python class and create two identical instances of it, they are not 
equal! 

>>> class A(): pass 
... 
>>> A() == A() 
False 

You might expect two identical expressions to be equal, but that’s evidently not a rule in Python. 
Because these are different instances of the A class, they are not considered equal. 

Be on the lookout for new mathematical objects that look like ones you know but don’t behave 
the same way. For instance, if the letters A and B represent numbers, then A · B = B · A. But, 
as you’ll learn in chapter 5, this is not necessarily the case if A and B are not numbers. If, 
instead, A and B are matrices, then the products A · B and B · A are different. In fact, it’s possible 
that only one of the products is even doable or that neither product is correct. 

When you’re writing code, it’s not enough to write statements with correct syntax. The ideas 
that your statements represent need to make sense to be valid. If you apply the same care 
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when you’re writing mathematical statements, you’ll catch your mistakes faster. Even better, if 
you write your mathematical statements in code, you’ll have the computer to help check your 
work. 

1.3.2 Build your own calculator 

Calculators are prevalent in math classes because it’s useful to check your work. You need to 
know how to multiply 6 by 7 without using your calculator, but it’s good to confirm that your 
answer of 42 is correct by consulting your calculator. The calculator also helps you save time 
once you’ve mastered mathematical concepts. If you’re doing trigonometry, and you need to 
know the answer to 3.14159 / 6, the calculator is there to handle it so you can instead think 
about what the answer means. The more a calculator can do out-of-the-box, the more useful it 
should theoretically be. 

But sometimes our calculators are too complicated for our own good. When I started high school, 
I was required to get a graphing calculator and I got a TI-84. It had about 40 buttons, each with 
2 to 3 different modes. I only knew how to use maybe 20 of them, so it was a cumbersome tool 
to learn how to use. The story was the same when I got my first ever calculator in first grade. 
There were only 15 buttons or so, but I didn’t know what some of them did. If I had to invent a 
first calculator for students, I would make it look something like the one in figure 1.14. 

 
Figure 1.14: A calculator for students learning to count 

This calculator only has two buttons. One of them resets the value to 1, and the other advances 
to the next number. Something like this would be the right “no-frills” tool for children learning 
to count. (My example may seem silly, but you can actually buy calculators like this! They are 
usually mechanical and sold as tally counters.) 

Soon after you master counting, you want to practice writing numbers and adding them. The 
perfect calculator at that stage of learning might have a few more buttons (figure 1.15). 
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Figure 1.15: A calculator capable of writing whole numbers and adding them 

There’s no need for buttons like −, *, or ÷ to get in your way at this phase. As you solve 
subtraction problems like 5 − 2, you can still check your answer of 3 with this calculator by 
confirming the sum 3 + 2 = 5. Likewise, you can solve multiplication problems by adding 
numbers repeatedly. You could upgrade to a calculator that does all of the operations of 
arithmetic when you’re done exploring with this one. 

I think an ideal calculator would be extensible, meaning that you could add more functionality 
to it as needed. For instance, you could add a button to your calculator for every new 
mathematical operation you learn. Once you got to algebra, maybe you could enable it to 
understand symbols like x or y in addition to numbers. When you learned calculus, you could 
further enable it to understand and manipulate mathematical functions. 

Extensible calculators that can hold many types of data seem far-fetched, but that’s exactly 
what you get when you use a high-level programming language. Python comes with arithmetic 
operations, a math module, and numerous third-party mathematical libraries you can pull in to 
make your programming environment more powerful whenever you want. Because Python is 
Turing complete, you can (in principle) compute anything that can be computed. You only need 
a powerful enough computer, a clever enough implementation, or both. 

In this book, we implement each new mathematical concept in reusable Python code. Working 
through the implementation yourself can be a great way of cementing your understanding of a 
new concept, and by the end, you’ve added a new tool to your toolbelt. After trying it yourself, 
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you can always swap in a polished, mainstream library if you like. Either way, the new tools you 
build or import lay the groundwork to explore even bigger ideas. 

1.3.3 Building abstractions with functions 

In programming, the process I just described is called abstraction. For example, when you get 
tired of repeated counting, you create the abstraction of addition. When you get tired of doing 
repeated addition, you create the abstraction of multiplication, and so on. 

Of all the ways that you can make abstractions in programming, the most important one to 
carry over to math is the function. A function in Python is a way of repeating some task that can 
take one or more inputs or that can produce an output. For example, 

def greet(name): 
    print("Hello %s!" % name) 

allows me to issue multiple greetings with short, expressive code like this: 

>>> for name in ["John","Paul","George","Ringo"]: 
...     greet(name) 
... 
Hello John! 
Hello Paul! 
Hello George! 
Hello Ringo! 

This function can be useful, but it’s not like a mathematical function. Mathematical functions 
always take input values, and they always return output values with no side effects.  

In programming, we call the functions that behave like mathematical functions pure functions. 
For example, the square function f(x) = x2 takes a number and returns the product of the 
number with itself. When you evaluate f(3), the result is 9. That doesn’t mean that the number 
3 has now changed and becomes 9. Rather, it means 9 is the corresponding output for the input 
3 for the function f. You can picture this squaring function as a machine that takes numbers in 
an input slot and produces results (numbers) in its output slot (figure 1.16). 

 
Figure 1.16: A function as a machine with an input slot and an output slot 

This is a simple and useful mental model, and I’ll return to it throughout the book. One of the 
things I like most about it is that you can picture a function as an object in and of itself. In math, 
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as in Python, functions are data that you can manipulate independently and even pass to other 
functions. 

Math can be intimidating because it is abstract. Remember, as in any well-written software, the 
abstraction is introduced for a reason: it helps you organize and communicate bigger and more 
powerful ideas. When you grasp these ideas and translate them into code, you’ll open up some 
exciting possibilities. 

If you didn’t already, I hope you now believe there are many exciting applications of math in 
software development. As a programmer, you already have the right mindset and tools to learn 
some new mathematical ideas. The ideas in this book provided me with professional and 
personal enrichment, and I hope they will for you as well. Let’s get started! 

1.4 Summary 
• There are interesting and lucrative applications of math in many software engineering 

domains. 
• Math can help you quantify a trend for data that changes over time; for instance, to 

predict the movement of a stock price. 
• Different types of functions convey different kinds of qualitative behavior. For instance, 

an exponential depreciation function means that a car loses a percentage of its resale 
value with each mile driven rather than a fixed amount. 

• Tuples of numbers (called vectors) represent multidimensional data. Specifically, 3D 
vectors are triples of numbers and can represent points in space. You can build complex 
3D graphics by assembling triangles specified by vectors. 

• Calculus is the mathematical study of continuous change, and many of the laws of physics 
are written in terms of calculus equations that are called differential equations. 

• It’s hard to learn math from traditional textbooks! You learn math by exploration, not as 
a straightforward march through definitions and theorems. 

• As a programmer, you’ve already trained yourself to think and communicate precisely; 
this skill will help you learn math as well. 

• Python is like an extensible calculator. Writing new functions in Python is like adding new 
buttons to your pocket calculator. 
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Drawing with 2D vectors 

This chapter covers 

• Creating and manipulating 2D drawings as collections of vectors 
• Thinking of 2D vectors as arrows, locations, and ordered pairs of coordinates 
• Using vector arithmetic to transform shapes in the plane 
• Using trigonometry to measure distances and angles in the plane 

You probably already have some intuition for what it means to be two-dimensional or three-
dimensional. A two-dimensional (2D) object is flat like an image on a piece of paper or a 
computer screen. It has only the dimensions of height and width. A three-dimensional (3D) 
object in our physical world, however, has not only height and width but also depth. 

Models of 2D and 3D entities are important in programming. Anything that shows up on the 
screen of your phone, tablet, or PC is a 2D object, occupying some width and height of pixels. 
Any simulation, game, or animation that represents the physical world is stored as 3D data and 
eventually projected to the two dimensions of the screen. In virtual and augmented reality 
applications, the 3D models must be paired with real, measured 3D data about the user’s 
position and perspective. 

Even though our everyday experience takes place in three dimensions, it's useful to think of 
some data as higher dimensional. In physics, it’s common to consider time as the fourth 
dimension. While an object exists at a location in 3D space, an event occurs at a 3D location 
and at a specified moment. In data science problems, it’s common for data sets to have far 
more dimensions. For instance, a user tracked on a website can have hundreds of measurable 
attributes, which describe usage patterns. Grappling with these problems in graphics, physics, 
and data analysis requires a framework for dealing with data in higher dimensions. This 
framework is vector mathematics. 
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Vectors are objects that live in multi-dimensional spaces. These have their own notions of 
arithmetic (adding, multiplying, and so on). We start by studying 2D vectors, which are easy to 
visualize and compute with. We use a lot of 2D vectors in this book, and we also use them as a 
mental model when reasoning about higher-dimensional problems. 

2.1 Picturing 2D vectors 
The 2D world is flat like a piece of paper or a computer screen. In the language of math, a flat, 
2D space is referred to as a plane. An object living in a 2D plane has the two dimensions of 
height and width but no third dimension of depth. Likewise, you can describe locations in 2D by 
two pieces of information: their vertical and horizontal positions. To describe the location of 
points in the plane, you need a reference point. We call that special reference point the origin. 
Figure 2.1 shows this relationship. 

 
Figure 2.1: Locating one of several points in the plane, relative to the origin 

There are many points to choose from, but we have to fix one of them as our origin. To 
distinguish it, we mark the origin with an x instead of with a dot as in figure 2.1. From the origin, 
we can draw an arrow (like the solid one in figure 2.1) to show the relative location of another 
point. 

A two-dimensional vector is a point in the plane relative to the origin. Equivalently, you can 
think of a vector as a straight arrow in the plane: any arrow can be placed to start at the origin, 
and it indicates a particular point (figure 2.2). 
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Figure 2.2: Superimposing an arrow on the plane indicates a point relative to the origin. 

We’ll use both arrows and points to represent vectors in this chapter and beyond. Points are 
useful to work with because we can build more interesting drawings out of them. If I connect 
the points in figure 2.2 as in figure 2.3, I get a drawing of a dinosaur: 

 
Figure 2.3: Connecting points in the plane to draw a shape 

Any time a 2D or 3D drawing is displayed by a computer, from my modest dinosaur to a feature-
length Pixar movie, it is defined by points—or vectors—connected to show the desired shape. 
To create the drawing you want, you need to pick vectors in the right places, requiring careful 
measurement. Let’s take a look at how to measure vectors in the plane. 

2.1.1 Representing 2D vectors 

With a ruler, we can measure one dimension such as the length of an object. To measure in two 
dimensions, we need two rulers. These rulers are called axes (the singular is axis), and we lay 
them out in the plane perpendicular to one another, intersecting at the origin. Drawn with axes, 
figure 2.4 shows that our dinosaur has the notions of up and down as well as left and right. The 
horizontal axis is called the x-axis and the vertical one is called the y-axis. 
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Figure 2.4: The dinosaur drawn with an x-axis and a y-axis. 

With axes to orient us, we can say things like, “Four of the points are above and to the right of 
the origin.” But we’ll want to get more quantitative than that. A ruler has tick marks that show 
how many units along it we’ve measured. Likewise, in our 2D drawing, we can add grid lines 
perpendicular to the axes that show where points lie relative to them. By convention, we place 
the origin at tick 0 on both the x- and y-axes (figure 2.5). 

 
Figure 2.5: Grid lines let us measure the location of points relative to the axes. 

In the context of this grid, we can measure vectors in the plane. For example, in figure 2.5, the 
tip of the dinosaur’s tail lines up with positive 6 on the x-axis and positive 4 on the y-axis. We 
could think of these distances as centimeters, inches, pixels, or any other unit of length, but 
usually we leave the units unspecified unless we have a particular application in mind. 
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The numbers 6 and 4 are called the x- and y-coordinates of the point, and this is enough to tell 
us exactly what point we’re talking about. We typically write coordinates as an ordered pair (or 
tuple) with the x-coordinate first and the y-coordinate second; for example, (6, 4). Figure 2.6 
shows how we can now describe the same vector in three ways. 

 
Figure 2.6: Three mental models describing the same vector. 

From another pair of coordinates like (-3, 4.5), we can find the point in the plane or the arrow 
that represents them. To get to the point in the plane with these coordinates, start at the origin 
and then travel three grid lines to the left (because the x-coordinate is -3) and then four and a 
half grid lines up (where the y-coordinate is 4.5). The point won’t lie at the intersection of two 
grid lines, but that’s fine; any pair of real numbers gives us some point on the plane. The 
corresponding arrow will be the straight-line path from the origin to that location, which points 
up and to the left (northwest, if you prefer). Try drawing this example for yourself as practice! 

2.1.2 2D drawing in Python 

When you produce an image on a screen, you’re working in a 2D space. The pixels on the screen 
are the available points in that plane. These are labeled by whole number coordinates rather 
than real number coordinates, and you can’t illuminate the space between pixels. That said, 
most graphics libraries let you work with floating-point coordinates and automatically handle 
translating graphics to pixels on the screen. 

We have plenty of language choices and libraries to specify graphics and to get them on the 
screen: OpenGL, CSS, SVG, and so on. Python has libraries like Pillow and Turtle that are well 
equipped for creating drawings with vector data. In this chapter, I use a small set of custom-
built functions to create drawings, built on top of another Python library called Matplotlib. This 
lets us focus on using Python to build images with vector data. Once you understand this 
process, you’ll be able to pick up easily any of the other libraries. 

The most important function I’ve included, called draw, takes inputs representing geometric 
objects and keyword arguments specifying how you want your drawing to look. The Python 
classes listed in table 2.1 represent each kind of drawable geometric object. 
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Table 2.1: Some Python classes representing geometric figures, usable with the draw function. 

Class Constructor example Description 

Polygon Polygon(*vectors) Draws a polygon whose vertices (corners) are represented 

by a list of vectors. 

Points Points(*vectors) Represents a list of points (dots) to draw, one at each of the 

input vectors. 

Arrow Arrow(tip) 

Arrow(tip, tail) 

Draws an arrow from the origin to the tip vector or from 

the tail vector to the head vector if a tail is specified. 

Segment Segment(start,end) Draws a line segment from the start to the vector end. 

You can find these functions implemented in the file vector_drawing.py in the source code. At 
the end of the chapter, I’ll say a bit more about how these are implemented.  

NOTE: For this chapter (and each subsequent chapter), there is a Jupyter notebook in the source code folder 

showing how to run (in order) all of the code in the chapter, including importing the functions from the 

vector_drawing module. If you haven’t already, you can consult appendix A to get set up with Python and 

Jupyter. 

With these drawing functions in hand, we can draw the points outlining the dinosaur (figure 
2.5): 

from vector_drawing import * 
dino_vectors = [(6,4), (3,1), (1,2), (-1,5), (-2,5), (-3,4), (-4,4), 

    # insert 16 remaining vectors here 
] 
 
draw( 
    Points(*dino_vectors) 
) 

I didn’t write out the complete list of dino_vectors, but with the suitable collection of vectors, 
the code gives you the points shown in figure 2.7 (matching figure 2.5 as well). 
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Figure 2.7: Plotting the dinosaur’s points with the draw function in Python 

As a next step in our drawing process, we can connect some dots. A first segment might connect 
the point (6, 4) with the point (3, 1) on the dinosaur’s tail. We can draw the points along with 
this new segment using this function call, and figure 2.8 shows the results: 

draw( 
    Points(*dino_vectors), 
    Segment((6,4),(3,1)) 
) 

 
Figure 2.8: The dinosaur’s points with a line segment connecting the first two points (6, 4) and (3, 1) 
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The line segment is actually the collection consisting of the points (6, 4) and (3, 1) as well as 
all of the points lying on the straight line between them. The draw function automatically colors 
all of the pixels at those points blue. The Segment class is a useful abstraction because we don’t 
have to build every segment from the points that make up our geometric object (in this case, 
the dinosaur). Drawing 20 more segments, we get the complete outline of the dinosaur (figure 
2.9). 

  
Figure 2.9: A total of 21 function calls give us 21 line segments, completing the outline of the dinosaur. 

In principle, we can now outline any kind of 2D shape we want, provided we have all of the 
vectors to specify it. Coming up with all of the coordinates by hand can be tedious, so we’ll start 
to look at ways to do computations with vectors to find their coordinates automatically. 

2.1.3 Exercises 

 
Exercise 2.1: What are the x- and y-coordinates of the point at the tip of the dinosaur’s toe? 
Solution: (-1, -4) 
 

 
Exercise 2.2: Draw the point in the plane and the arrow corresponding to the point (2, -2). 
Solution: Represented as a point on the plane and an arrow, (2, -2) looks like this: 
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The point and arrow representing (2, -2) 
 

 
Exercise 2.3: By looking at the locations of the dinosaur’s points, infer the remaining vectors not included in the 
dino_vectors list. For instance, I already included (6, 4), which is the tip of the dinosaur’s tail, but I didn’t include the 
point (-5, 3), which is a point on the dinosaur’s nose. When you’re done, dino_vectors should be a list of 21 vectors 
represented as coordinate pairs. 
Solution: The complete set of vectors outlining the dinosaur is as follows: 
dino_vectors = [(6,4), (3,1), (1,2), (-1,5), (-2,5), (-3,4), (-4,4),  

    (-5,3), (-5,2), (-2,2), (-5,1), (-4,0), (-2,1), (-1,0), (0,-3),  

    (-1,-4), (1,-4), (2,-3), (1,-2), (3,-1), (5,1) 

] 
 

 
Exercise 2.4: Draw the dinosaur with the dots connected by constructing a Polygon object with the dino_vectors 
as its vertices. 
Solution:  
draw( 

    Points(*dino_vectors), 

    Polygon(*dino_vectors) 

) 
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The dinosaur drawn as a polygon. 
 

 
Exercise 2.5: Draw the vectors (x,x**2) for x in the range from x = -10 to x = 11) as points (dots) using the draw 
function. What is the result? 
Solution: The pairs draw the graph for the function y = x2, plotted for the integers from -10 to 10: 

 
Points on the graph for y = x2 
To make this graph, I used two keyword arguments for the draw function. The grid keyword argument of (1, 10) 
draws vertical grid lines every one unit and horizontal grid lines every ten units. The nice_aspect_ratio keyword 
argument set to False tells the graph it doesn’t have to keep the x-axis and the y-axis scales the same: 

draw( 

    Points(*[(x,x**2) for x in range(-10,11)]), 

    grid=(1,10), 
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    nice_aspect_ratio=False 

) 

 

2.2 Plane vector arithmetic 
Like numbers, vectors have their own kind of arithmetic; we can combine vectors with 
operations to make new vectors. The difference with vectors is that we can visualize the results. 
Operations from vector arithmetic all accomplish useful geometric transformations, not just 
algebraic ones. We’ll start with the most basic operation: vector addition. 

Vector addition is simple to calculate: given two input vectors, you add their x-coordinates to 
get the resulting x-coordinate and then you add their y-coordinates to get the resulting y-
coordinate. Creating a new vector with these summed coordinates gives you the vector sum of 
the original vectors. For instance, (4, 3) + (-1, 1) = (3, 4) because 4 + (-1) = 3 and 3 + 1 = 4. 
That’s a one-liner to implement in Python: 

def add(v1,v2): 
    return (v1[0] + v2[0], v1[1] + v2[1]) 

Because we can interpret vectors as arrows or as points in the plane, we can visualize the result 
of the addition in both ways (figure 2.10). As a point in the plane, you can reach (-1, 1) by 
starting at the origin, which is (0, 0), and move one unit to the left and one unit up. You reach 
the vector sum of (4, 3) + (-1, 1) by starting instead at (4, 3) and moving one unit to the left 
and one unit up. This is the same as saying you traverse one arrow and then traverse the 
second. 

 
Figure 2.10: Picturing the vector sum of (4, 3) and (-1, 1) 
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The rule for vector addition of arrows is sometimes called tip-to-tail addition. That’s because if 
you move the tail of the second arrow to the tip of the first (without changing its length or 
direction!), then the sum is the arrow from the start of the first to the end of the second (figure 
2.11). 

 
Figure 2.11: Tip-to-tail addition of vectors 

When we talk about arrows, we really mean “a specific distance in a specific direction.” If you 
walk one distance in one direction and another distance in another direction, the vector sum 
tells you the overall distance and direction you traveled (figure 2.12). 

 
Figure 2.12: The vector sum as an overall distance and direction traveled in the plane. 

Adding a vector has the effect of moving or translating an existing point or collection of points. 
If we add the vector (-1.5, -2.5) to every vector of dino_vectors, we get a new list of vectors, 
each of which is 1.5 units left and 2.5 units down from one of the original vectors. Here’s the 
code for that: 

dino_vectors2 = [add((-1.5,-2.5), v) for v in dino_vectors] 

The result is the same dinosaur shape shifted down and to the left by the vector (-1.5, -2.5). 
To see this (figure 2.13), we can draw both dinosaurs as polygons: 

draw( 
    Points(*dino_vectors, color=blue), 
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    Polygon(*dino_vectors, color=blue), 
    Points(*dino_vectors2, color=red), 
    Polygon(*dino_vectors2, color=red) 
) 

 
Figure 2.13: The original dinosaur (blue) and the translated copy (red). Each point on the translated dinosaur is 
moved by (-1.5, 2.5) down and to the left from its location on the original dinosaur. 

The arrows in the copy on the right show that each point moved down and to the left by the 
same vector: (-1.5, -2.5). A translation like this is useful if, for instance, we want to make the 
dinosaur a moving character in a 2D computer game. Depending on the button pressed by the 
user, the dinosaur could translate in the corresponding direction on the screen. We’ll implement 
a real game like this with moving vector graphics in chapters 7 and 9. 

2.2.1 Vector components and lengths 

Sometimes it’s useful to take a vector we already have and decompose it as a sum of smaller 
vectors. For example, if I were asking for walking directions in New York City, it would be much 
more useful to hear “go four blocks east and three blocks north” rather than “go 800 meters 
northeast.” Similarly, it can be useful to think of vectors as a sum of a vector pointing in the x 
direction and a vector pointing in the y direction. 

As an example, figure 2.14 shows the vector (4, 3) rewritten as the sum (4, 0) + (0, 3). Thinking 
of the vector (4, 3) as a navigation path in the plane, the sum (4, 0) + (0, 3) gets us to the 
same point along a different path. 
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Figure 2.14: Breaking the vector (4, 3) into the sum (4, 0) + (0, 3) 

The two vectors (4, 0) and (0, 3) are called the x and y components, respectively. If you couldn’t 
walk diagonally in this plane (as if it were New York City), you would need to walk four units to 
the right and then three units up to get to the same destination: a total of seven units. 

The length of a vector is the length of the arrow that represents it, or equivalently, the distance 
from the origin to the point that represents it. In New York City, this could be the distance 
between two intersections “as the crow flies.” The length of a vector in the x or y direction can 
be measured immediately as a number of ticks passed on the corresponding axis: (4, 0) or 
(0, -4) are both vectors of the same length, 4, albeit in different directions. In general, though, 
vectors lie diagonally, and we need to do a calculation to get their lengths. 

You may recall the relevant formula: the Pythagorean theorem. For a right triangle (a triangle 
having two sides meeting at a 90° angle), the Pythagorean theorem says that the square of the 
length of the longest side is the sum of squares of the lengths of the other two sides. The longest 
side is called the hypotenuse, and its length is denoted by c in the memorable formula a2 + b2 
= c2, where a and b are the lengths of the other two sides. With a = 4 and b = 3, we can find c 
as the square root of 42 + 32 (figure 2.15). 
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Figure 2.15: Using the Pythagorean theorem to find the length of a vector from the lengths of its x- and y- 
components 

Breaking a vector into components is handy because it always gives us a right triangle. If we 
know the lengths of the components, we can compute the length of the hypotenuse, which is 
the length of the vector. Our vector (4, 3) is equal to (4, 0) + (0, 3), a sum of two perpendicular 
vectors whose sides are 4 and 3, respectively. The length of the vector (4, 3) is the square root 
of 42 + 32, which is the square root of 25, or 5. In a city with perfectly square blocks, traveling 
4 blocks east and 3 blocks north would take us the equivalent of 5 blocks northeast. 

This is a special case where the distance turns out to be an integer, but typically, lengths that 
come out of the Pythagorean theorem are not whole numbers. The length of (-3, 7) is given in 
terms of the lengths of its components 3 and 7 by the following computation: 

  
We can translate this formula into a length function in Python, which takes a 2D vector and 
returns its floating-point length: 

from math import sqrt 
def length(v): 
    return sqrt(v[0]**2 + v[1]**2) 

2.2.2 Multiplying vectors by numbers 

Repeated addition of vectors is unambiguous: you can keep stacking arrows tip-to-tail as long 
as you want. If a vector named v has coordinates (2, 1), then the fivefold sum v + v + v + v 
+ v would look like that shown in figure 2.16. 
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Figure 2.16: Repeated addition of the vector v = (2, 1) with itself 

If v were a number, we wouldn’t bother writing v + v + v + v + v. Instead, we’d write the 
simpler product 5 ∙ v. There’s no reason we can’t do the same for vectors. The result of adding 
v to itself 5 times is a vector in the same direction but with 5 times the length. We can run with 
this definition, which lets us multiply a vector by any whole or fractional number. 

The operation of multiplying a vector by a number is called scalar multiplication. When working 
with vectors, ordinary numbers are often called scalars. It’s also an appropriate term because 
the effect of this operation is scaling the target vector by the given factor. It doesn’t matter if 
the scalar is a whole number; we can easily draw a vector that is 2.5 times the length of another 
(figure 2.17). 

 
Figure 2.17: Scalar multiplication of a vector v by 2.5 

The result on the vector components is that each component is scaled by the same factor. You 
can picture scalar multiplication as changing the size of the right triangle defined by a vector 
and its components, but not affecting its aspect ratio. Figure 2.18 superimposes a vector v and 
its scalar multiple 1.5 ∙ v, where the scalar multiple is 1.5 times as long. Its components are 
also 1.5 times the length of the original components of v. 
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Figure 2.18: Scalar multiplication of a vector scales both components by the same factor. 

In coordinates, the scalar multiple of 1.5 times the vector v = (6, 4) gives us a new vector (9, 
6), where each component is 1.5 times its original value. Computationally, we execute any 
scalar multiplication on a vector by multiplying each coordinate of the vector by the scalar. As 
a second example, scaling a vector w = (1.2, -3.1) by a factor 6.5 can be accomplished like 
this: 

6.5 ∙ w = 6.5 ∙ (1.2, -3.1) = (6.5 ∙ 1.2, 6.5 ∙ -3.1) = (7.8, -20.15) 

We tested this method for a fractional number as the scalar, but we should also test a negative 
number. If our original vector is (6, 4), what is -½ times that vector? Multiplying the coordinates, 
we expect the answer to be (-3, -2). Figure 2.19 shows that this vector is half the length of the 
original and points in the opposite direction. 
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Figure 2.19: Scalar multiplication of a vector by a negative number, -½ 

2.2.3 Subtraction, displacement, and distance 

Scalar multiplication agrees with our intuition for multiplying numbers. A whole number multiple 
of a number is the same as a repeated sum, and the same holds for vectors. We can make a 
similar argument for negative vectors and vector subtraction. 

Given a vector v, the negative vector, -v, is the same as the scalar multiple -1 ∙ v. If v is (-4, 
3), its opposite, -v, is (4, -3) as shown in figure 2.20. We get this by multiplying each coordinate 
by -1, or in other words, changing the sign of each. 

 
Figure 2.20: The vector v = (-4, 3) and its opposite -v = (4, -3). 
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On the number line, there are only two directions from zero: positive and negative. In the plane, 
there are many directions (infinitely many, in fact), so we can’t say that one of v and -v is 
positive while the other is negative. What we can say is that for any vector v, the opposite 
vector -v will have the same length, but it will point in the opposite direction. 

Having a notion of negating a vector, we can define vector subtraction. For numbers, x − y is 
the same as x + (-y). We set the same convention for vectors. To subtract a vector w from a 
vector v, you add the vector -w to v. Thinking of vectors v and w as points, v − w is the 
position of v relative to w. Thinking instead of v and w as arrows beginning at the origin, figure 
2.21 shows that v − w is the arrow from the tip of w to the tip of v. 

 
Figure 2.21: The result of subtracting v − w is an arrow from the tip of w to the tip of v. 

The coordinates of v − w are the differences of the coordinates v and w. In figure 2.21, v = (-
1, 3) and w = (2, 2). The difference for v − w has the coordinates (-1 − 2, 3 − 2) = (-3, 1). 

Let’s look at the difference of the vectors v = (-1, 3) and w = (2, 2) again. You can use the 
draw function I gave you to plot the points v and w and to draw a segment between them. The 
code looks like this: 

draw( 
    Points((2,2), (-1,3)), 
    Segment((2,2), (-1,3), color=red) 
) 

The difference for the vectors v − w = (-3, 1) tells us that if we start at point w, we need to go 
three units left and one unit up to get to point v. This vector is sometimes called the 
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displacement from w to v. The straight, red line segment from w to v in figure 2.22, drawn by 
this Python code, shows the distance between the two points. 

 
Figure 2.22: The distance between two points in the plane 

The length of the line segment is computed with the Pythagorean theorem as follows: 

 
While the displacement is a vector, the distance is a scalar (a single number). The distance on 
its own is not enough to specify how to get from w to v; there are plenty of points that have 
the same distance from w. Figure 2.23 shows a few others with whole number coordinates. 
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Figure 2.23: Several points equidistant from w = (2,2) 

2.2.4 Exercises 

 
Exercise 2.6: If the vector u = (-2, 0), the vector v = (1.5, 1.5), and the vector w = (4, 1), what are the results of u + v, v + 
w, and u + w? What is the result of u + v + w? 
Solution: With the vector u = (-2, 0), the vector v = (1.5, 1.5), and the vector w = (4, 1), the results are as follows: 
u + v = (-0.5, 1.5) 
v + w = (5.5, 2.5) 
u + w = (2, 1) 
u + v + w = (3.5, 2.5) 
 

 
Mini-project 2.7: You can add any number of vectors together by summing all of their x-coordinates and all of their y-
coordinates. For instance, the fourfold sum (1, 2) + (2, 4) + (3, 6) + (4, 8) has x component 1 + 2 + 3 + 4 = 10 and y 
component 2 + 4 + 6 + 8 = 20, making the result (10, 20). Implement a revised add function that takes any number of 
vectors as arguments. 
Solution: 
def add(*vectors): 

    return (sum([v[0] for v in vectors]), sum([v[1] for v in vectors])) 
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Exercise 2.8: Write a function translate(translation, vectors) that takes a translation vector and a list of 
input vectors, and returns a list of the input vectors all translated by the translation vector. For instance, 
translate((1,1), [(0,0), (0,1,), (-3,-3)]) should return [(1,1),(1,2),(-2,-2)]. 
Solution: 
def translate(translation, vectors): 

    return [add(translation, v) for v in vectors] 
 

 
Mini-project 2.9: Any sum of vectors v + w gives the same result as w + v. Explain why this is true using the definition of 
the vector sum on coordinates. Also, draw a picture to show why it is true geometrically. 
Solution: If you add two vectors u = (a, b) and v = (c, d), the coordinates a, b, c, and d are all real numbers. The result of 
the vector addition is u + v = (a + b, c + d). The result of v + u is (b + a, d + c), which is the same pair of coordinates 
because order doesn’t matter when adding real numbers. Tip-to-tail addition in either order yields the same sum vector. 
Visually, we can see this by adding an example pair of vectors tip-to-tail: 

 
Tip-to-tail addition in either order yields the same sum vector. 
It doesn’t matter whether you add u + v or v + u (dashed lines), you get the same result vector (solid line). In geometric 
terms, u and v define a parallelogram, and the vector sum is the length of the diagonal. 
 

 
Exercise 2.10: Among the following three arrow vectors (labeled u, v, and w), which pair has the sum that gives the 
longest arrow? Which pair sums to give the shortest arrow? 

 
Which pair sums to the longest or shortest arrow? 
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Solution: We can measure each of the vector sums by placing the vectors tip-to-tail: 

 
Tip-to-tail addition of the vectors in question 
Inspecting the results, we can see that v + u is the shortest vector (u and v are in nearly opposite directions and come 
close to canceling each other out). The longest vector is v + w. 
 

 
Mini-project 2.11: Write a Python function using vector addition to show 100 simultaneous and non-overlapping copies 
of the dinosaur. This shows the power of computer graphics: imagine how tedious it would be to specify all 2,100 
coordinate pairs by hand! 
Solution: With some trial and error, you can translate the dinosaurs in the vertical and horizontal direction so that they 
don’t overlap, and set the boundaries appropriately. I decided to leave out the grid lines, axes, origin, and points to 
make the drawing clearer. My code looks like this: 
def hundred_dinos(): 

    translations = [(12*x,10*y)  

                    for x in range(-5,5)  

                    for y in range(-5,5)] 

    dinos = [Polygon(*translate(t, dino_vectors),color=blue) 

                for t in translations] 

    draw(*dinos, grid=None, axes=None, origin=None) 

 

hundred_dinos() 
The result is as follows: 
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100 dinosaurs. Run for your life! 
 

 
Exercise 2.12: Which is longer, the x or y component of (3, -2) + (1, 1) + (-2, -2)? 
Solution: The result of the vector sum (3, -2) + (1, 1) + (-2, -2) is (2, -3). The x component is (2, 0) and the y component is 
(0, -3). The x component has a length of 2 units (to the right), while the y component has a length of 3 units (downward 
because it is negative). This makes the y component longer. 
 

 
Exercise 2.13: What are the components and lengths of the vectors (-6, -6) and (5, -12)? 
Solution: The components of (-6, -6) are (-6, 0) and (0, -6), both having length 6. The length of (-6, -6) is the square root 
of 62 + 62, which is approximately 8.485. 
The components of (5, -12) are (5, 0) and (0, -12), having lengths of 5 and 12, respectively. The length of (5, -12) is 
given by the square root of 52 + 122 = 25 + 144 = 169. The result of the square root is exactly 13. 
 

 
Exercise 2.14: Suppose I have a vector v that has a length of 6 and an x component (1, 0). What are the possible 
coordinates of v? 
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Solution: The x component of (1, 0) has length 1 and the total length is 6, so the length b of the y component must 
satisfy the equation 12 + b2 = 62, or 1 + b2 = 36. Then b2 = 35 and the length of the y component is approximately 
5.916. This doesn’t tell us the direction of the y component, however. The vector v could either be (1, 5.916) or (1, -
5.916). 
 

 
Exercise 2.15: What vector in the dino_vectors list has the longest length? Use the length function we wrote to 
compute the answer quickly. 
Solution: 
>>> max(dino_vectors, key=length) 

(6, 4) 
 

 
Exercise 2.16: Suppose a vector w has the coordinates (√2, √3). What are the approximate coordinates of the scalar 
multiple π ∙ w? Draw an approximation of the original vector and the new vector. 

Solution: The value of (√2, √3) is approximately  
(1.4142135623730951, 1.7320508075688772) 
Scaling each coordinate by a factor of π (pi), we get 
(4.442882938158366, 5.441398092702653) 
The scaled vector is longer than the original as shown here: 

 

The original vector (shorter) and its scaled version (longer) 
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Exercise 2.17: Write a Python function scale(s,v) that multiplies the input vector v by the input scalar s. 
Solution:  
def scale(scalar,v): 

    return (scalar * v[0], scalar * v[1]) 

 

 
Mini-project 2.18: Convince yourself algebraically that scaling the coordinates by a factor also scales the length of the 
vector by the same factor. Suppose a vector of length c has the coordinates (a, b). Show that for any non-negative real 
number s, the length of (s ∙ a,  s ∙ b) is s ∙ c. (This can’t work for a negative value of s because a vector can’t have a 
negative length.) 
Solution: We use the notation |(a, b)| to denote the length of a vector (a, b). So, the premise of the exercise tells us: 

 
From that, we can compute the length of (sa, sb): 

 
As long as s isn’t negative, it’s the same as its absolute value: s = |s|. Then the length of the scaled vector is sc as we 
hoped to show. 
 

 
Mini-project 2.19: Suppose u = (-1, 1) and v = (1, 1), and suppose r and s are real numbers. Specifically, let’s assume -1 
< r < 1 and -3 < s < 3. Where are the possible points on the plane where the vector r ∙ u + s ∙ v could end up? 
Note that the order of operations is the same for vectors as it is for numbers. We assume scalar multiplication is carried 
out first and then vector addition (unless parentheses specify otherwise). 
Solution: If r = 0, the possibilities lie on the line segment from (-1, -1) to (1, 1). If r is not zero, the possibilities can leave 
that line segment in the direction of (-1, 1) or -(-1, 1) by up to three units. The region of possible results is the 
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parallelogram with vertices at (-2, 4), (-4, 2), (2, -4), and (4, -2). We can test many random, allowable values of r and s to 
validate this: 
from random import uniform 

u = (-1,1) 

v = (1,1) 

def random_r(): 

    return uniform(-3,3) 

def random_s():  

    return uniform(-1,1) 

possibilities = [add(scale(random_r(), u), scale(random_s(), v))  

                 for i in range(0,500)] 

draw( 

    Points(*possibilities) 

) 

If you run this code, you get a picture like the following, showing the possible points where r ∙ u + s ∙ v could end up given 
the constraints: 

 
Location of possible points for r ∙ u + s ∙ v given the constraints. 
 

 
Exercise 2.20: Show algebraically why a vector and its opposite have the same length? (Hint: plug the coordinates and 
their opposites into the Pythagorean theorem.) 
Solution: The opposite vector of (a, b) has coordinates (-a, -b), but this doesn't affect the length: 

 
The vector (-a, -b) has the same length as (a, b). 
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Exercise 2.21: Of the following seven vectors, represented as arrows, which two are a pair of opposite vectors? 

 
Solution: The two circled vectors are opposites because these have equal length and opposite direction: 

 
Vectors v3 and v7 are the pair of opposite vectors. 
 

 
Exercise 2.22: Suppose u is any 2D vector. What are the coordinates of u + -u? 
Solution: A 2D vector u has some coordinates (a, b). Its opposite has coordinates (-a, -b), so: 
u + (-u) = (a, b) + (-a, -b) = (a − a, b − b) = (0, 0) 
The answer is (0, 0). Geometrically, this means that if you follow one vector and then its opposite, you end up back at 
the origin, (0, 0). 
 

 
Exercise 2.23: For vectors u = (-2, 0), v = (1.5, 1.5), and w = (4, 1), what are the results of the vector subtractions v − w, 
u − v, and w − v? 
Solution: With u = (-2, 0), v = (1.5, 1.5), and w = (4, 1), we have  
v − w = (-2.5, 0.5)  
u − v = (-3.5, -1.5)  
w − v = (2.5, -0.5) 
 

 
Exercise 2.24: Write a Python function subtract(v1,v2) that returns the result of v1 − v2, taking two 2D vectors 
as inputs and returning a 2D vector as an output. 
Solution:  
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def subtract(v1,v2): 

    return (v1[0] - v2[0], v1[1] - v2[1]) 

 

 
Exercise 2.25: Write a Python function distance(v1,v2) that returns the distance between two input vectors. (Note 
that the subtract function from the previous exercise already gives the displacement.) 
Write another Python function perimeter(vectors) that takes a list of vectors as an argument and returns the sum 
of distances from each vector to the next, including the distance from the last vector to the first. What is the perimeter 
of the dinosaur defined by dino_vectors? 
Solution: The distance is just the length of the difference of the two input vectors: 
def distance(v1,v2): 

    return length(subtract(v1,v2)) 

For the perimeter, we sum the distances of every pair of subsequent vectors in the list, as well as the pair of the first 
and the last vectors: 
def perimeter(vectors): 

    distances = [distance(vectors[i], vectors[(i+1)%len(vectors)]) 

                    for i in range(0,len(vectors))] 

    return sum(distances) 
We can use a square with side length of one as a sanity check: 
>>> perimeter([(1,0),(1,1),(0,1),(0,0)]) 

4.0 
Then we can calculate the perimeter of the dinosaur: 
>>> perimeter(dino_vectors) 

44.77115093694563 
 

 
Mini-project 2.26: Let u be the vector (1, 2). Suppose there is another vector v with positive integer coordinates (n, m) 
such that n > m and has a distance of 13 from u. What is the displacement from u to v? (Hint: you can use Python to 
search for the vector v.) 
Solution: We only need to search possible integer pairs (n, m) where n is within 13 units of 1 and m is within 13 units of 
-1: 
for n in range(-12,15): 

    for m in range(-14, 13): 

        if distance((n,m), (1,-1)) == 13 and n > m > 0: 

            print((n,m)) 
There is one result: (13, 4). It is 12 units to the right and 5 units up from (1, -1), so the displacement is (12, 5). 
 

The length of a vector is not enough to describe it, nor is the distance between two vectors 
enough information to get from one to the other. In both cases, the missing ingredient is 
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direction. If you know how long a vector is and you know what direction it is pointing, you can 
identify it and find its coordinates. To a large extent, this is what trigonometry is about, and 
we’ll review that subject in the next section. 

2.3 Angles and trigonometry in the plane 
So far, we’ve used two “rulers” (called the x-axis and the y-axis) to measure vectors in the 
plane. An arrow from the origin covers some measurable displacement in the horizontal and 
vertical directions, and these values uniquely specify the vector. Instead of using two rulers, we 
could just as well use a ruler and a protractor. Starting with the vector (4, 3), we can measure 
or calculate its length to be 5 units, and then use our protractor to identify the direction as 
shown in figure 2.24. 

 
Figure 2.24: Using a protractor to measure the angle at which a vector points 

This vector has a length of 5 units, and it points in a direction approximately 37° 
counterclockwise from the positive half of the x-axis. This gives us a new pair of numbers (5, 
37°) that, like our original coordinates, uniquely specify the vector. These numbers are called 
polar coordinates and are just as good at describing points in the plane as the ones we’ve worked 
with so far, called Cartesian coordinates. 

Sometimes, like when we’re adding vectors, it’s easier to use Cartesian coordinates. Other 
times, polar coordinates are more useful; for instance, when we want to look at vectors rotated 
by some angle. In code, we don’t have literal rulers or protractors available, so we use 
trigonometric functions to convert back and forth instead. 

2.3.1 From angles to components 

Let’s look at the reverse problem: imagine we already have an angle and a distance, say, 
116.57° and 3. These define a pair of polar coordinates (3, 116.57°). How can we find the 
Cartesian coordinates for this vector geometrically? 
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First, we can position our protractor at the origin to find the right direction. We measure 116.57° 
counterclockwise from the positive x-axis and draw a line in that direction (figure 2.25). Our 
vector (3, 116.57°) lies somewhere on this line. 

 
Figure 2.25: Measuring 116.57° from the positive x-axis using a protractor 

The next step is to take a ruler and measure a point that is three units from the origin in this 
direction. Once we’ve found it, as in figure 2.26, we can measure the components and get our 
approximate coordinates (-1.34, 2.68). 

 
Figure 2.26: Using a ruler to measure the coordinates of the point that is three units from the origin 

It may look like the angle 116.57° was a random choice, but it has a useful property. Starting 
from the origin and moving in that direction, you go up two units every time you go one unit to 
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the left. Vectors that approximately lie along that line include (-1, 2), (-3, 6) and, of course, (-
1.34, 2.68); the y coordinates are -2 times their x coordinates (figure 2.27). 

 
Figure 2.27: Traveling in the direction of 116.57°, you travel two units up for every unit you travel to the left. 

The strange angle 116.57° happens to give us a nice round ratio of -2. We won’t always be 
lucky enough to get a whole number ratio, but every angle does give us a constant ratio. The 
angle 45° gives us one vertical unit for every one horizontal unit or a ratio of 1. Figure 2.28 
shows another angle, -200°. This gives us a constant ratio of -0.36 vertical units for every -1 
horizontal unit covered or a ratio of 0.36. 
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Figure 2.28: How much vertical distance is covered per unit of horizontal distance at different angles? 

Given an angle, the coordinates of vectors along that angle will have a constant ratio. This ratio 
is called the tangent of the angle, and the tangent function is written as tan. You’ve seen a few 
of its approximate values so far: 

tan(37°) ≈ ¾ 

tan(116.57°) ≈ -2 

tan(45°) = 1 

tan(200°) ≈ 0.36 

Here, to denote approximate equality, I use the symbol ≈ as opposed to the symbol =. The 
tangent function is a trigonometric function because it helps us measure triangles. (The “trigon” 
in trigonometry means triangle and “metric” means measurement.) Note that I haven’t told you 
how to calculate the tangent yet, only what a few of its values are. Python has a built-in tangent 
function that I’ll show you how to use shortly. You almost never have to worry about calculating 
(or measuring) the tangent of an angle yourself. 

The tangent function is clearly related to our original problem of finding Cartesian coordinates 
for a vector given an angle and a distance. But it doesn’t actually provide the coordinates, only 
their ratio. For that, two other trigonometric functions are helpful: sine and cosine. If we 
measure some distance at some angle (figure 2.29), the tangent of the angle gives us the 
vertical distance covered divided by the horizontal distance. 
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Figure 2.29: Schematic of distances and angles for a given vector 

By comparison, the sine and cosine give us the vertical and horizontal distance covered relative 
to the overall distance. These are written sin and cos for short, and this equation shows the 
definitions for both: 

 
Let’s look at the angle 37° for a concrete example (figure 2.30). We saw that the point (4, 3) 
lies at a distance of 5 units from the origin at this angle. 

 
Figure 2.30: Measuring the angle to the point (4, 3) with a protractor 

For every 5 units you travel at 37°, you cover approximately 3 vertical units. Therefore, we can 
write: 
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sin(37°) ≈ 3 / 5 

Similarly, for every 5 units you travel at 37°, you cover approximately 4 horizontal units, so we 
can write:  

cos(37°) ≈ 4 / 5 

This is a general strategy for converting a vector in polar coordinates to corresponding Cartesian 
coordinates. If you know the sine and cosine of an angle θ (the Greek letter theta, commonly 
used for angles) and a distance r traveled in that direction, the Cartesian coordinates are given 
by (r · cos(θ), r · sin(θ)) and shown in figure 2.31. 

 
Figure 2.31: Picturing the conversion from polar coordinates to Cartesian coordinates for a right triangle 

2.3.2 Radians and trigonometry in Python 

Let’s turn what we’ve reviewed about trigonometry into Python code. Specifically, let’s build a 
function that takes a pair of polar coordinates (a length and an angle) and outputs a pair of 
Cartesian coordinates (lengths of x and y components). 

The main hurdle is that Python’s built-in trigonometric functions use different units than the 
ones we’ve used. We expect tan(45°) = 1, for instance, but Python gives us a much different 
result: 

>>> from math import tan 
>>> tan(45) 
1.6197751905438615 

Python doesn’t use degrees, and neither do most mathematicians. Instead, they use units called 
radians to measure angles. The conversion factor is 

1 radian ≈ 57.296° 

This may seem like an arbitrary conversion factor. Some more suggestive relationships between 
degrees and radians are given in terms of the special number π (pi), whose value is 
approximately 3.14159. Here’s a few examples: 
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π radians = 180° 

2π radians = 360° 

In radians, half a trip around a circle is an angle of π and a whole revolution is 2π. These 
respectively agree with the half and whole circumference of a circle of radius 1 (figure 2.32). 

 
Figure 2.32: A half revolution is π radians, while a whole revolution is 2π radians. 

You can think of radians as another kind of ratio: for a given angle, its measurement in radians 
tells you how many radiuses you’ve gone around the circle. Because of this special property, 
angle measurements without units are assumed to be radians. Noting that 45° = π/4 (radians), 
we can get the correct result for the tangent of this angle: 

>>> from math import tan, pi 
>>> tan(pi/4) 
0.9999999999999999 

We can now make use of Python’s trigonometric functions to write a to_cartesian function, 
taking a pair of polar coordinates and returning corresponding Cartesian coordinates: 

from math import sin, cos 
def to_cartesian(polar_vector): 
    length, angle = polar_vector[0], polar_vector[1] 
    return (length*cos(angle), length*sin(angle)) 

Using this, we can verify that 5 units at an angle of 37° gets us close to the point (4, 3): 

>>> from math import pi 
>>> angle = 37*pi/180 
>>> to_cartesian((5,angle)) 
(3.993177550236464, 3.0090751157602416) 
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Now that we can convert from polar coordinates to Cartesian coordinates, let’s see how to 
convert in the other direction. 

2.3.3 From components back to angles 
Given a pair of Cartesian coordinates like (-2, 3), we know how to find the length with the 

Pythagorean theorem. In this case, it is √13, which is the first of the two polar coordinates we 

are looking for. The second is the angle, which we can call θ (theta), indicating the direction of 

this vector (figure 2.33). 

 
Figure 2.33: In what angle does the vector (-2, 3) point? 

We can say some facts about the angle θ that we’re looking for. Its tangent, tan(θ), is -3/2, 
while sin(θ) = 3/√13 and cos(θ) = -2/√13. All that’s left is finding a value of θ that satisfies 
these. If you like, you can pause and try to approximate this angle yourself by guessing and 
checking. 

Ideally, we’d like a more efficient method than this. It would be great if there were a function 
that took the value of sin(θ), for instance, and gave you back θ. This turns out to be easier said 
than done, but Python’s math.asin function makes a good attempt. This is an implementation 
of the inverse trigonometric function called the arcsine, and it returns a satisfactory value of θ: 

>>> from math import asin 
>>> sin(1) 
0.8414709848078965 
>>> asin(0.8414709848078965) 
1.0 

So far, so good. But what about the sine of our angle 3/√13? 

>>> from math import sqrt 
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>>> asin(3/sqrt(13)) 
0.9827937232473292 

This angle is roughly 56.3°, and as figure 2.34 shows, that’s the wrong direction! 

 
Figure 2.34: Python’s math.asin function appears to give us the wrong angle. 

It’s not wrong that math.asin gives us this answer; another point (2, 3) does lie in this direction. 
It is at length √13 from the origin, so the sine of this angle is also 3√13. This is why math.asin 
is not a full solution for us. There are multiple angles that can have the same sine. 

The inverse trigonometric function, called arccosine and implemented in Python as math.acos, 
happens to give us the right value: 

>>> from math import acos 
>>> acos(-2/sqrt(13)) 
2.1587989303424644 

This many radians is about the same as 123.7°, which we can confirm to be correct using a 
protractor. But this is only by happenstance; there are other angles that could have given us 
the same cosine. For instance, (-2, -3) also has distance √13 from the origin, so it lies at an 
angle with the same cosine as θ: -2√13. To find the value of θ that we actually want, we’ll have 
to make sure the sine and cosine agree with our expectation. The angle returned by Python, 
which is approximately 2.159, satisfies this: 

>> cos(2.1587989303424644) 
-0.5547001962252293 
>>> -2/sqrt(13) 
-0.5547001962252291 
>>> sin(2.1587989303424644) 
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0.8320502943378435 
>>> 3/sqrt(13) 
0.8320502943378437 

None of the arcsine, arccosine, or arctangent functions are sufficient to find the angle to a point 
in the plane. It is possible to find the correct angle by a tricky geometric argument you probably 
learned in high school trigonometry class. I’ll leave that as an exercise and cut to the chase—
Python can do the work for you! The math.atan2 function takes the Cartesian coordinates of a 
point in the plane (in reverse order!) and gives you back the angle at which it lies. For example, 

>>> from math import atan2 
>>> atan2(3,-2) 
2.158798930342464 

I apologize for burying the lede, but I did so because it’s worth knowing the potential pitfalls of 
using inverse trigonometric functions. In summary, trigonometric functions are tricky to do in 
reverse: multiple different inputs can produce the same output, so an output can’t be traced 
back to a unique input. This lets us complete the function we set out to write: a converter from 
Cartesian to polar coordinates: 

def to_polar(vector): 
    x, y = vector[0], vector[1] 
    angle = atan2(y,x) 
    return (length(vector), angle) 

We can verify some simple examples: to_polar((1,0)) should be one unit in the positive x 
direction or an angle of zero degrees. Indeed, the function gives us an angle of zero and a length 
of one: 

>>> to_polar((1,0)) 
(1.0, 0.0) 

(The fact that the input and the output are the same is coincidental; they have different 
geometric meanings.) Likewise, we get the expected answer for (-2, 3): 

>>> to_polar((-2,3)) 
(3.605551275463989, 2.158798930342464) 

2.3.4 Exercises 

 
Exercise 2.27: Confirm that the vector given by Cartesian coordinates (-1.34, 2.68) has a length of approximately 3 as 
expected. 
Solution:  
>>> length((-1.34,2.68)) 

2.9963310898497184 
Close enough! 
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Exercise 2.28: The figure shows a line that makes a 22° angle in the counterclockwise direction from the positive x-
axis. Based on the following picture, what is the approximate value of tan(22°)?  

 
Solution: The line passes close to the point (10, 4), so 4 / 10 = 0.4 is a reasonable approximation of tan(22°) as shown 
here: 

 
Example: Turning the question around, suppose we know the length and direction of a vector and want to find its 
components. What are the x and y components of a vector with length 15 pointing at a 37° angle?   
The sine of 37° is ⅗, which tells us that every 5 units of distance covered at this angle takes us 3 units upward. So, 15 
units of distance give us a vertical component of ⅗ ∙ 15, or 9.   
The cosine of 37° is ⅘, which tells us that each 5 units of distance in this direction take us 4 units to the right, so the 
horizontal component is ⅘ ∙ 15 or 12. In summary, the polar coordinates (15, 37°) correspond approximately to the 
Cartesian coordinates (9, 12). 
 

 
Exercise 2.29: Suppose I travel 8.5 units from the origin at an angle of 125°, measured counterclockwise from the 
positive x-axis. Given that sin(125°) = 0.819 and cos(125°) = -0.574, what are my final coordinates? Draw a picture to 
show the angle and path traveled. 
Solution:  
x = r · cos(θ) = 8.5 · -0.574 = -4.879 
y = r · sin(θ) = 8.5 · 0.819 = 6.962 
The following figure shows the final position, (-4.879, 6.962): 
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Exercise 2.30: What are the sine and cosine of 0°? Of 90°? Of 180°? In other words, how many vertical and horizontal 
units are covered per unit distance in any of these directions? 
Solution: At 0°, no vertical distance is covered, so sin(0°) = 0; rather, every unit of distance traveled is a unit of 
horizontal distance, so cos(0°) = 1. 
For 90° (a quarter turn counterclockwise), every unit traveled is a positive vertical unit, so sin(90°) = 1, while cos(90°) 
= 0. 
Finally, at 180°, every unit of distance traveled is a negative unit in the x direction, so cos(180°) = -1 and sin(180°) = 
0. 
 

 
Exercise 2.31: The following diagram gives some exact measurements for a right triangle: 
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First, confirm that these lengths are valid for a right triangle because they satisfy the Pythagorean theorem. Then, 
calculate the values of sin(30°), cos(30°), and tan(30°) to three decimal places using the measurements in the 
diagram. 
Solution: These side lengths indeed satisfy the Pythagorean theorem: 

 
Plugging the side lengths into the Pythagorean theorem 
The trigonometric function values are given by the appropriate ratios of side lengths: 

 
Calculating the sine, cosine, and tangent by their definitions 
 

 
Exercise 2.32: Looking at the triangle from the previous exercise from a different perspective, use it to calculate the 
values of sin(60°), cos(60°), and tan(60°) to three decimal places. 
Solution: Rotating and reflecting the triangle from the previous exercise has no effect on its side lengths or angles. 
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A rotated copy of the triangle from the previous exercise 
The ratios of the side lengths give the trigonometric function values for 60°: 

 
Calculating the defining ratios when horizontal and vertical components have switched 
 

 
Exercise 2.33: The cosine of 50° is 0.643. What is sin(50°) and what is tan(50°)? Draw a picture to help you calculate 
the answer. 
Solution: Given that the cosine of 50° is 0.643, the following triangle is valid: 
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That is, it has the right ratio of the two known side lengths: 0.643 / 1 = 0.643. To find the unknown side length, we can 
use the Pythagorean theorem: 

 
With the known side lengths, sin(50°) = 0.766/1 = 0.766. Also, tan(50°) = 0.766/0.643 = 1.192. 
 

 
Exercise 2.34: What is 116.57° in radians? Use Python to compute the tangent of this angle and confirm that it is close 
to -2 as we saw previously. 
Solution: 116.57° · (1 radian/57.296°) = 2.035 radians: 
>>> from math import tan 

>>> tan(2.035) 

-1.9972227673316139 
 

 
Exercise 2.35: Locate the angle 10π/6. Do you expect the values of cos(10π/6) and sin(10π/6) to be positive or 
negative? Use Python to calculate their values and confirm. 
Solution: A whole circle is 2π radians, so the angle π/6 is one twelfth of a circle. You can picture cutting a pizza in 12 
slices, and counting counterclockwise from the positive x-axis, the angle 10π/6 is two slices short of a full rotation. This 
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means that it points down and to the right. The cosine should be positive, and the sine should be negative because the 
distance in this direction corresponds with a positive horizontal displacement and a negative vertical displacement: 
>>> from math import pi, cos, sin 

>>> sin(10*pi/6) 

-0.8660254037844386 

>>> cos(10*pi/6) 

0.5000000000000001 
 

 
Exercise 2.36: The following list comprehension creates 1,000 points in polar coordinates: 
[(cos(5*x*pi/500.0), 2*pi*x/1000.0) for x in range(0,1000)] 
In Python code, convert these to Cartesian coordinates and connect them in a closed loop with line segments to draw a 
picture. 
Solution: Including the setup and the original list of data, the code is as follows: 
polar_coords = [(cos(x*pi/100.0), 2*pi*x/1000.0) for x in range(0,1000)] 

vectors = [to_cartesian(p) for p in polar_coords] 

draw(Polygon(*vectors, color=green)) 

And the result is a five-leafed flower: 

 
The plot of the 1,000 connected points is a flower shape. 
 

 
Exercise 2.37: Find the angle to get to the point (-2, 3) by “guess-and-check.” 
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What is the angle to get to the point (-2, 3)? 
Hint: We can tell visually that the answer is between π/2 and π. On that interval, the values of sine and cosine always 
decrease as the angle increases. 
Solution: Here's an example of guessing and checking between π/2 and π, looking for an angle with tangent close to -
3/2 = -1.5: 
>>> from math import tan, pi 

>>> pi, pi/2 

(3.141592653589793, 1.5707963267948966) 

>>> tan(1.8) 

-4.286261674628062 

>>> tan(2.5) 

-0.7470222972386603 

>>> tan(2.2) 

-1.3738230567687946 

>>> tan(2.1) 

-1.7098465429045073 

>>> tan(2.15) 

-1.5289797578045665 

>>> tan(2.16) 

-1.496103541616277 

>>> tan(2.155) 

-1.5124173422757465 

>>> tan(2.156) 

-1.5091348993879299 

>>> tan(2.157) 

-1.5058623488727219 

>>> tan(2.158) 

-1.5025996395625054 

>>> tan(2.159) 

-1.4993467206361923 
The value must be between 2.158 and 2.159. 
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Exercise 2.38: Find another point in the plane with the same tangent as θ, namely -3/2. Use Python’s implementation 
of the arctangent function, math.atan, to find the value of this angle. 
Solution: Another point with tangent -3/2 is (3, -2). Python's math.atan finds the angle to this point: 

>>> from math import atan 

>>> atan(-3/2) 

-0.982793723247329 

This is slightly less than a quarter turn in the clockwise direction. 
 

 
Exercise 2.39: Without using Python, what are the polar coordinates corresponding to the Cartesian coordinates (1, 1) 
and (1, -1)? Once you’ve found the answers, use to_polar to check your work. 

Solution: In polar coordinates, (1, 1) becomes (√2, π/2) and (1, -1) becomes (√2, -π/2). 
With some care, you can find any angle on a shape made up of known vectors. The angle between two vectors is either 
a sum or difference of angles these make with the x-axis. You measure some trickier angles in the next mini-project. 

 
Mini-project 2.40: What is the angle of the Dinosaur’s mouth? What is the angle of the dinosaur’s toe? Of the point of 
its tail? 

 
Some angles we can measure or calculate on our dinosaur. 
 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

2.4 Transforming collections of vectors 
Collections of vectors store spatial data like drawings of dinosaurs regardless of what coordinate 
system we use: polar or Cartesian. It turns out that when we want to manipulate vectors, one 
coordinate system can be better than another. We already saw that moving (or translating) a 
collection of vectors is easy with Cartesian coordinates. It turns out to be much less natural in 
polar coordinates. Because polar coordinates have angles built in, these make it simple to carry 
out rotations. 

In polar coordinates, adding to the angle rotates a vector further counterclockwise, while 
subtracting from it rotates the vector clockwise. The polar coordinate (1, 2) is at distance 1 and 
at an angle of 2 radians. (Remember that we are working in radians if there is no degree 
symbol!) Starting with the angle 2 and adding or subtracting 1 takes the vector either 1 radian 
counterclockwise or clockwise, respectively (figure 2.35). 

 
Figure 2.35: Adding or subtracting from the angle rotates the vector about the origin. 

Rotating a number of vectors simultaneously has the effect of rotating the figure these represent 
about the origin. The draw function only understands Cartesian coordinates, so we need to 
convert from polar to Cartesian before using it. Likewise, we have only seen how to rotate 
vectors in polar coordinates, so we need to convert Cartesian coordinates to polar coordinates 
before executing a rotation. Using this approach, we can rotate the dinosaur like this: 

rotation_angle = pi/4 
dino_polar = [to_polar(v) for v in dino_vectors] 
dino_rotated_polar = [(l,angle + rotation_angle) for l,angle in dino_polar] 
dino_rotated = [to_cartesian(p) for p in dino_rotated_polar] 
draw( 
    Polygon(*dino_vectors, color=gray), 
    Polygon(*dino_rotated, color=red) 
) 
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The result of this code is a gray copy of the original dinosaur, plus a superimposed red copy 
that’s rotated by 𝜋𝜋/4, or an eighth of a full revolution counterclockwise (figure 2.36). 

 
Figure 2.36: The original dinosaur in gray and a rotated copy in red 

As an exercise at the end of this section, you can write a general-purpose rotate function that 
rotates a list of vectors by the same specified angle. I’m going to use such a function in the next 
few examples, and you can either use the implementation I provide in the source code or one 
you come up with yourself. 

2.4.1 Combining vector transformations 

So far, we’ve seen how to translate, rescale, and rotate vectors. Applying any of these 
transformations to a collection of vectors achieves the same effect on the shape that these 
define in the plane. The full power of these vector transformations comes when we apply them 
in sequence. 

For instance, we could first rotate and then translate the dinosaur. Using the translate function 
from the exercise in section 2.2.4 and the rotate function, we can write such a transformation 
concisely (see the result in figure 2.37): 

new_dino = translate((8,8), rotate(5 * pi/3, dino_vectors)) 
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Figure 2.37: The original dinosaur in gray and a red copy that’s rotated and then translated. 

The rotation comes first, turning the dinosaur counterclockwise by 5π/3, which is most of a full 
counterclockwise revolution. Then the dinosaur is translated up and to the right by 8 units each. 
As you can imagine, combining rotations and translations appropriately can move the dinosaur 
(or any shape) to any desired location and orientation in the plane. Whether we’re animating 
our dinosaur in a movie or in a game, the flexibility to move it around with vector 
transformations lets us give it life programmatically.  

Our applications will soon take us past cartoon dinosaurs: there are plenty of other operations 
on vectors and many generalize to higher dimensions. Real-world data sets often live in dozens 
or hundreds of dimensions, so we’ll apply the same kinds of transformations to these as well. 
It’s often useful to both translate and rotate data sets to make their important features clearer. 
We won’t be able to picture rotations in 100 dimensions, but we can always think of two 
dimensions as a trusty metaphor. 

2.4.2 Exercises 

 
Exercise 2.41: Create a rotate(angle, vectors) function that takes an array of input vectors in Cartesian 
coordinates and rotates those by the specified angle (counterclockwise or clockwise, according to whether the angle is 
positive or negative). 
Solution: 
def rotate(angle, vectors): 

    polars = [to_polar(v) for v in vectors] 

    return [to_cartesian((l, a+angle)) for l,a in polars] 
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Exercise 2.42: Create a function regular_polygon(n) that returns Cartesian coordinates for the vertices of a 
regular n-sided polygon (that is, having all angles and side lengths equal). For instance, polygon(7) produces vectors 
defining the following heptagon: 

 
A regular heptagon with points at seven evenly-spaced angles around the origin 
Hint: In this picture, I used the vector (1,0) and copies that are rotated by seven evenly-spaced angles about the origin. 
Solution:  
def regular_polygon(n): 

    return [to_cartesian((1, 2*pi*k/n)) for k in range(0,n)] 
 

 
Exercise 2.43: What is the result of first translating the dinosaur by the vector (8, 8) and then rotating it by 5𝜋𝜋/3? Is the 
result the same as rotating and then translating? 
Solution:  
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First translating and then rotating the dinosaur 
The result is not the same. In general, applying rotations and translations in different orders yields different results. 
 

2.5 Drawing with Matplotlib 
As promised, I’ll conclude by showing you how to build “from scratch” the drawing functions 
used in this chapter from the Matplotlib library. After installing Matplotlib with pip, you can 
import it (and some of its submodules); for example, 

import matplotlib 
from matplotlib.patches import Polygon 
from matplotlib.collections import PatchCollection 

The Polygon, Points, Arrow, and Segment classes are not that interesting; they simply hold the 
data passed to them in their constructors. For instance, the Points class contains only a 
constructor that receives and stores a list of vectors and a color keyword argument: 

class Points(): 
    def __init__(self, *vectors, color=black): 
        self.vectors = list(vectors) 
        self.color = color 

The draw function starts by figuring out how big the plot should be and then draws each of the 
objects it is passed one-by-one. For instance, to draw dots on the plane represented by a Points 
object, draw uses Matplotlib’s scatter-plotting functionality: 

def draw(*objects, ... 
    # … #<1> 

    for object in objects: #<2> 
    # …  

        elif type(object) == Points: #<3> 
            xs = [v[0] for v in object.vectors] 
            ys = [v[1] for v in object.vectors] 
            plt.scatter(xs, ys, color=object.color) 
        # ... 

#1 Some setup happens here, which is not shown. 
#2 Iterates over the objects passed in 
#3 If the current object is an instance of the Points class, draws dots for all of its vectors using Matplotlib’s scatter 

function  

Arrows, segments, and polygons are handled in much the same way using different pre-built 
Matplotlib functions to make the geometric objects appear on the plot. You can find all of these 
implemented in the source code file vector_drawing.py. We’ll use Matplotlib throughout this 
book to plot data and mathematical functions, and I’ll provide periodic refreshers on its 
functionality as we use it. 
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Now that you’ve mastered two dimensions, you’re ready to add another one. With the third 
dimension, we can fully describe the world we live in. In the next chapter, you’ll see how to 
model three-dimensional objects in code. 

2.6 Summary 
• Vectors are mathematical objects that live in multi-dimensional spaces. These can be 

geometric spaces like the two-dimensional (2D) plane of a computer screen or the three-
dimensional (3D) world we inhabit. 

• You can think of vectors equivalently as arrows having a specified length and direction, 
or as points in the plane relative to a reference point called the origin. Given a point, 
there is a corresponding arrow that shows how to get to that point from the origin. 

• You can connect collections of points in the plane to form interesting shapes like a 
dinosaur. 

• In 2D, coordinates are pairs of numbers that help us measure the location of points in 
the plane. Written as a tuple (x, y), the x and y values tell us how far horizontally and 
vertically to travel to get to the point.  

• We can store points as coordinate tuples in Python and choose from a number of libraries 
to draw the points on the screen. 

• Vector addition has the effect of translating (or moving) a first vector in the direction of 
a second added vector. Thinking of a collection of vectors as paths to travel, their vector 
sum gives the overall direction and distance traveled. 

• Scalar multiplication of a vector by a numeric factor yields a vector that is longer by that 
factor and points in the same direction as the original. 

• Subtracting one vector from a second gives the relative position of the second vector 
from the first. 

• Vectors can be specified by their length and direction (as an angle). These two numbers 
define the polar coordinates of a given 2D vector.  

• The trigonometric functions sine, cosine, and tangent are used to convert between 
ordinary (Cartesian) coordinates and polar coordinates. 

• It’s easy to rotate shapes defined by collections of vectors in polar coordinates. You only 
need to add or subtract the given rotation angle from the angle of each vector. Rotating 
and translating shapes in the plane lets us place them anywhere and in any orientation. 
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Ascending to the 3D world 

This chapter covers 

• Building a mental model for 3D vectors 
• Doing 3D vector arithmetic 
• Using the dot product and cross product to measure lengths and directions 
• Rendering a 3D object in 2D 

The 2D world is easy to visualize, but the real world has three dimensions. Whether we are 
using software to design a building, animate a movie, or run an action game, our programs need 
to be aware of the three spatial dimensions in which we live. 

In a 2D space, like a page of this book, we have a vertical and a horizontal direction. Adding a 
third dimension, we could also talk about points outside of the page or arrows perpendicular to 
the page. But even when programs simulate three dimensions, most computer displays are two-
dimensional. Our mission in this chapter is to build the tools we need to take 3D objects 
measured by 3D vectors and convert them to 2D so our objects can show up on the screen. 

A sphere is one example of a 3D shape. A successfully drawn 3D sphere could look like the one 
shown in figure 3.1. Without the shading, it would just look like a circle. 
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Figure 3.1: Shading on a 2D circle makes it look like a 3D sphere. 

The shading shows that light hits our sphere at a certain angle in 3D and gives it an illusion of 
depth. Our general strategy is not to draw a perfectly round sphere, but an approximation made 
up of polygons. Each polygon can be shaded according to the precise angle it makes with a light 
source. Believe it or not, figure 3.1 is not a picture of a round ball, but of 8,000 triangles in 
varying shades. Figure 3.2 shows another example with fewer triangles. 

 
Figure 3.2: Drawing a shaded sphere using many small, solid-colored triangles 

We have the mathematical machinery to define a triangle on a 2D screen: we only need the 
three 2D vectors defining the corners. But we can’t decide how to shade them unless we also 
think of them as having a life in three dimensions. For this, we need to learn to work with 3D 
vectors.   

Of course, this is already a solved problem, and we start by using a pre-built library to draw our 
3D shapes. Once we have the feel for the world of 3D vectors, we can build our own renderer 
and show how to draw the sphere. 
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3.1 Picturing vectors in 3D space 
In the 2D plane, we worked with three interchangeable mental models of a vector: coordinate 
pairs, arrows of fixed length and direction, and points positioned relative to the origin. Because 
the pages of this book have a finite size, we limited our view to a small portion of the plane—a 
rectangle of fixed height and width like the one shown in figure 3.3. 

 
Figure 3.3: The height and width of a small segment of the 2D plane 

We can interpret a 3D vector in similar ways. Instead of viewing a rectangular portion of the 
plane, we start with a finite box of 3D space. Such a 3D box, pictured in figure 3.4, has a finite 
height, width, and depth. In 3D, we keep the notions of x and y directions, and we add a z 
direction with which to measure the depth. 
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Figure 3.4: A small finite box of 3D space has a width (x), a height (y), and a depth (z). 

We can think of any 2D vectors as living in 3D space, having the same size and orientation but 
fixed to a plane where the depth z is zero. Figure 3.5 shows the 2D drawing of the vector (4, 3) 
embedded in 3D space with all the same features it had before. The second drawing (on the 
right) annotates all of the features that are still included. 

 
Figure 3.5: The 2D world and inhabitant vector (4, 3) contained in the 3D world. 

The dashed lines form a rectangle in the 2D plane where depth is zero. It’s helpful to draw 
dashed lines meeting at right angles to help us locate points in 3D. Otherwise, our perspective 
might deceive us and a point may not be where we think it is. 

Our vector still lives in a plane, but now we can also see it lives in a bigger 3D space. We can 
draw another 3D vector (a new arrow and a new point) that lives off of the original plane, 
extending to a higher depth value (figure 3.6). 
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Figure 3.6: A vector extending into the third dimension as compared to the 2D world and the inhabitant vector 
(4, 3) of figure 3.5. 

To make the location of this second vector clear, I drew a dashed box instead of a dashed 
rectangle as in figure 3.5. In figure 3.6, this box shows the length, width, and depth the vector 
covers in 3D space. Arrows and points work as mental models for vectors in 3D just like in 2D, 
and we can measure them similarly with coordinates. 

3.1.1 Representing 3D vectors with coordinates 

The pair of numbers (4, 3) is enough to specify a single point or arrow in 2D, but in 3D, there 
are numerous points with an x-coordinate of 4 and a y-coordinate of 3. In fact, as figure 3.7 
shows, there is a whole line of points in 3D with these coordinates, each having different 
positions in the z (or depth) direction. 
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Figure 3.7: Several vectors with the same x- and y-coordinates but with different z-coordinates 

To specify a unique point in 3D, we need three numbers in total. A triple of numbers like (4, 3, 
5) are called the x-, y-, and z-coordinates for a vector in 3D. As before, we can read these as 
instructions to find the desired point. As shown in figure 3.8, to get to the point (4, 3, 5), we 
first go +4 units in the x direction, then go +3 units in the y direction, and then finally, go +5 
units in the z direction. 

 
Figure 3.8: The three coordinates (4, 3, 5) give us directions to a point in 3D. 
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3.1.2 3D drawing with Python 

As in the previous chapter, I use a wrapper around Python’s Matplotlib library to make vector 
drawings in 3D. You can find the implementation in the source code for this book, but I’ll stick 
with the wrapper to focus on the conceptual process of drawing rather than the details of 
Matplotlib. 

My wrapper uses new classes like Points3D and Arrow3D to distinguish 3D objects from their 
2D counterparts. A new function, draw3d, knows how to interpret and render these objects so 
as to make these look three-dimensional. By default, draw3d() shows the axes and the origin 
as well as a small box of 3D space (figure 3.9), even if no objects are specified for drawing.  

 
Figure 3.9: Drawing an empty 3D region with Matplotlib’s draw3d() 

The x-, y-, and z-axes that are drawn are perpendicular in the space, despite being skewed by 
our perspective. For visual clarity, Matplotlib shows the units outside the box, but the origin and 
the axes themselves are displayed within the box. The origin is the coordinate (0, 0, 0), and the 
axes emanate from it in the positive and negative x, y, and z directions. 

The Points3D class stores a collection of vectors we want to think of as points and, therefore, 
draw as dots in 3D space. For instance, we could plot the vectors (2, 2, 2) and (1, -2, -2) with 
the following code that produces figure 3.10: 

draw3d( 
    Points3D((2,2,2),(1,-2,-2)) 
) 
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Figure 3.10: Drawing the points (2, 2, 2) and (1, -2, -2) 

To visualize these vectors instead as arrows, we can represent the vectors as Arrow3D objects. 
We can also connect the tips of arrows with a Segment3D object as follows, producing figure 
3.11: 

draw3d( 
    Points3D((2,2,2),(1,-2,-2)), 
    Arrow3D((2,2,2)), 
    Arrow3D((1,-2,-2)), 
    Segment3D((2,2,2), (1,-2,-2)) 
) 

 
Figure 3.11: Drawing 3D arrows 
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It’s a bit hard to see which direction the arrows are pointing in figure 3.11. To make it clearer, 
we can draw dashed boxes around the arrows to make them look more three-dimensional. 
Because we’ll draw these boxes so frequently, I created a Box3D class to represent a box with 
one corner at the origin and the opposite one at a given point. Figure 3.12 illustrates the 3D 
box, but first, here’s the code: 

draw3d( 
    Points3D((2,2,2),(1,-2,-2)), 
    Arrow3D((2,2,2)), 
    Arrow3D((1,-2,-2)), 
    Segment3D((2,2,2), (1,-2,-2)), 
    Box3D(2,2,2), 
    Box3D(1,-2,-2) 
) 

 
Figure 3.12: Drawing boxes to make our arrows look 3D 

In this chapter, I use a number of (hopefully self-explanatory) keyword arguments without 
introducing them explicitly. For instance, a color keyword argument can be passed to most of 
these constructors, controlling the color of the object that shows up in the drawing.   

3.1.3 Exercises 

 
Exercise 3.1: Draw the 3D arrow and point representing the coordinates (-1, -2, 2) as well as the dashed box that makes 
the arrow look 3D. Do this drawing by hand for practice, but from now on, we’ll use Python to draw for us. 
Solution: 
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The vector (-1, -2, 2) and the box that makes it look 3D 
 

 
Mini-project 3.2: There are exactly eight 3D vectors whose coordinates are all either +1 or -1. For instance, (1, -1, 1) is 
one of these. Plot all of these eight vectors as points. Then figure out how to connect them with line segments using 
Segment3D objects to form the outline of a cube.  
Hint: you’ll need 12 segments in total. 
Solution: Because there are only 8 vertices and 12 edges, it’s not too tedious to list them all, but I decided to 
enumerate them with a list comprehension. For the vertices, I let x, y, and z range over the list of two possible values [-
1, 1] and collected the eight results. For the edges, I grouped them into three sets of four that point in each 
coordinate direction. For instance, there are four edges that go from x = -1 to x = 1, while their y- and z-coordinates are 
the same at both endpoints: 
pm1 = [1,-1] 

vertices = [(x,y,z) for x in pm1 for y in pm1 for z in pm1] 

edges = [((-1,y,z),(1,y,z)) for y in pm1 for z in pm1] +\ 

            [((x,-1,z),(x,1,z)) for x in pm1 for z in pm1] +\ 

            [((x,y,-1),(x,y,1)) for x in pm1 for y in pm1] 

draw3d( 

    Points3D(*vertices,color=blue), 

    *[Segment3D(*edge) for edge in edges] 

) 
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The cube with all vertex coordinates equal to +1 or -1 
 

3.2 Vector arithmetic in 3D 
With these Python functions in hand, it’s easy to visualize the results of vector arithmetic in 
three dimensions. All of the arithmetic operations we saw in 2D have analogies in 3D, and the 
geometric effects of each are similar. 

3.2.1 Adding 3D vectors 

In 3D, vector addition can still be accomplished by adding coordinates. The vectors (2, 1, 1) and 
(1, 2, 2) sum to (2+1, 1+2, 1+2) = (3, 3, 3). We can start at the origin and place the two input 
vectors tip-to-tail in either order to get to the sum point (3, 3, 3) (figure 3.13). 

 
Figure 3.13: Two visual examples of vector addition in 3D 
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As in 2D, we can add any number of 3D vectors together by summing all of their x-coordinates, 
all of their y-coordinates, and all of their z-coordinates. These three sums give us the coordinates 
of the new vector. For instance, in the sum (1, 1, 3) + (2, 4, -4) + (4, 2, -2), the respective x-
coordinates are 1, 2, and 4, which sum to 7. The y-coordinates sum to 7 as well, and the z-
coordinates sum to -3; therefore, the vector sum is (7, 7, -3). Tip-to-tail, the three vectors look 
like those in figure 3.14. 

 
Figure 3.14: Adding three vectors tip-to-tail in 3D 

In Python, we can write a concise function to sum any number of input vectors and that works 
in two or three dimensions (or an even higher number of dimensions as we’ll see later). Here it 
is: 

def add(*vectors): 
    by_coordinate = zip(*vectors) 
    coordinate_sums = [sum(coords) for coords in by_coordinate] 
    return tuple(coordinate_sums) 

Let’s break it down. Calling Python’s zip function on the input vectors extracts their x-
coordinates, y-coordinates, and z-coordinates. For instance, 

>>> list(zip(*[(1,1,3),(2,4,-4),(4,2,-2)])) 
[(1, 2, 4), (1, 4, 2), (3, -4, -2)] 

(You need to convert the zip result to a list to display its values.) If we apply Python’s sum 
function to each of the grouped coordinates, we get the sums of x, y, and z values, respectively: 
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[sum(coords) for coords in [(1, 2, 4), (1, 4, 2), (3, -4, -2)]] 
[7, 7, -3] 

Finally, for consistency, we convert this from a list to a tuple because we’ve represented all of 
our vectors as tuples to this point. The result is the tuple (7, 7, 3). We could also have written 
the add function as the following one-liner (which is perhaps less Pythonic): 

def add(*vectors): 
    return tuple(map(sum,zip(*vectors))) 

3.2.2 Scalar multiplication in 3D 

To multiply a 3D vector by a scalar, we multiply all of its components by the scalar factor. For 
example, the vector (1, 2, 3) multiplied by the scalar 2 gives us (2, 4 ,6). This resulting vector 
is twice as long but points in the same direction as in the 2D case. Figure 3.15 shows v = (1, 2, 
3) and its scalar multiple 2 ∙ v = (2, 4, 6). 

 
Figure 3.15: Scalar multiplication by 2 returns a vector pointing in the same direction, which is twice as long as 
the original vector. 

3.2.3 Subtracting 3D vectors 

In 2D, the difference of the two vectors v − w is the vector “from w to v,” which is called the 
displacement. In 3D, the story is the same; in other words, v − w is the displacement from w 
to v, which is the vector you can add to w to get v. Thinking of v and w as arrows from the 
origin, the difference v − w is an arrow that can be positioned to have its tip at the tip of v and 
its tail at the tip of w. Figure 3.16 shows the difference of v = (-1, -3, 3) and w = (3, 2, 4), 
both as an arrow from w to v and as a point in its own right. 
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Figure 3.16: Subtracting the vector w from the vector v gives the displacement from w to v. 

Subtracting a vector w from a vector v is accomplished in coordinates by taking the difference 
of the coordinates of v and w. For instance, v − w gives us (-1 − 3, -3 − 2, 3 − 4) = (-4, -5, -
1) as a result. These coordinates agree with the picture of v − w in figure 3.16, which shows 
it’s a vector pointing in the negative x, negative y, and negative z directions. 

When I claim scalar multiplication by two makes a vector “twice as long,” I’m thinking in terms 
of geometric similarity. If each of the three components of v are doubled, corresponding to 
doubling the length, width, and depth of the box, the diagonal distance from one corner to the 
other should also double. To actually measure and confirm this, we need to know how to 
calculate distances in 3D. 

3.2.4 Computing lengths and distances 

In 2D, we calculated the length of a vector with the Pythagorean theorem, using the fact that 
an arrow vector and its components make a right triangle. Likewise, the distance between two 
points in the plane was just the length of their difference as a vector. 

We have to look a bit closer, but we can still find a suitable right triangle in 3D to help us 
calculate the length of a vector. Let’s try to find the length of the vector (4, 3, 12). The x and y 
components still give us a right triangle lying in the plane where z = 0. This triangle’s 
hypotenuse, or diagonal side, has length √42 +  32 = √25 = 5. If this were a 2D vector, we’d be 
done, but the z component of 12 makes this vector quite a bit longer (figure 3.17). 
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Figure 3.17: Applying the Pythagorean theorem to find the length of a hypotenuse in the x,y plane 

So far all of the vectors we’ve considered lie in the x,y plane where z = 0. The x component is 
(4, 0, 0), the y component is (0, 3, 0), and their vector sum is (4, 3, 0). The z component of 
(0, 0, 12) is perpendicular to all three of these. That’s useful because it gives us a second right 
triangle in the diagram: the one formed by (4, 3, 0) and (0, 0, 12) and placed tip-to-tail. The 
hypotenuse of this triangle is our original vector (4, 3, 12), whose length we want to find. Let’s 
focus on this second right triangle and invoke the Pythagorean theorem again to find the 
hypotenuse length (shown in figure 3.18). 
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Figure 3.18: A second application of the Pythagorean theorem gives us the length of the 3D vector.  

Squaring both known sides and taking the square root should give us the length. Here, the 
lengths are 5 and 12 so the result is √52 +  122 = 13. In general, the following equation shows 
the formula for the length of a vector in 3D:  

 
This is conveniently similar to the 2D length formula. In either 2D or 3D, the length of a vector 
is the square root of the sum of squares of its components. Because we don’t explicitly reference 
the length of the input tuple anywhere in the following length function, it will work on either 
2D or 3D vectors: 

from math import sqrt 
def length(v): 
    return sqrt(sum([coord ** 2 for coord in v])) 

So, for instance, length((3,4,12)) returns 13. 

3.2.5 Computing angles and directions 

As in 2D, you can think of a 3D vector as an arrow or a displacement of a certain length in a 
certain direction. In 2D, this means that two numbers—a length and an angle making a pair of 
polar coordinates—are sufficient to specify any 2D vector. In 3D, one angle is not sufficient to 
specify a direction but two angles are. 
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For the first angle, we again think of the vector without its z-coordinate, as if it still lived in the 
x,y plane. Another way of thinking of this is as the shadow cast by the vector from a light at a 
very high z position. This shadow makes some angle with the positive x-axis, which is analogous 
to the angle we used in polar coordinates, and we label it with the Greek letter ϕ (phi). The 
second angle is the one that the vector makes with the z-axis, which is labeled with the Greek 
letter θ (theta). Figure 3.19 shows these angles.  

 
Figure 3.19: Two angles that together measure the direction of a 3D vector 

The length of the vector, labeled r, along with the angles ϕ and θ can describe any vector in 
three dimensions. Together, the three numbers r, ϕ, and θ are called spherical coordinates as 
opposed to the Cartesian coordinates x, y, and z. Calculating spherical coordinates from 
Cartesian coordinates is a doable exercise with only the trigonometry we’ve covered, but we 
won’t go into it here. In fact, we won’t use spherical coordinates again in this book, but I want 
to briefly compare them with polar coordinates.  

Polar coordinates were useful because they allowed us to perform any rotation of a collection of 
plane vectors by simply adding or subtracting from the angle. We were also able to read the 
angle between two vectors by taking the difference of their angles in polar coordinates. In three 
dimensions, neither of the angles ϕ and θ lets us immediately decide the angle between two 
vectors. And while we could rotate vectors easily around the z-axis by adding or subtracting 
from the angle ϕ, it’s not convenient to rotate about any other axis in spherical coordinates. 

We need some more general tools to handle angles and trigonometry in 3D. We’ll cover two 
such tools, called vector products, in the next section. 
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3.2.6 Exercises 

 
Exercise 3.3: Draw (4, 0, 3) and (-1, 0, 1) as Arrow3D objects, such that they are placed tip-to-tail in both orders in 3D. 
What is their vector sum? 
Solution: We can find the vector sum using the add function we built: 

>>> add((4,0,3),(-1,0,1)) 

(3, 0, 4) 
Then to draw these tip-to-tail, we draw arrows from the origin to each point and from each point to the vector sum (3, 0, 
4). Like the 2D Arrow object, Arrow3D takes the tip vector of the arrow first and then, optionally, the tail vector if it is 
not the origin: 
draw3d( 

    Arrow3D((4,0,3),color=red), 

    Arrow3D((-1,0,1),color=blue), 

    Arrow3D((3,0,4),(4,0,3),color=blue), 

    Arrow3D((-1,0,1),(3,0,4),color=red), 

    Arrow3D((3,0,4),color=purple) 

) 

  
Tip-to-tail addition shows (4, 0, 3) + (-1, 0, 1) = (-1, 0, 1) + (4, 0, 3) = (3, 0, 4). 
 

 
Exercise 3.4: Suppose we set vectors1=[(1,2,3,4,5),(6,7,8,9,10)] and 
vectors2=[(1,2),(3,4),(5,6)]. Without evaluating in Python, what are the lengths of zip(*vectors1) and 
zip(*vectors2)? 
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Solution: The first zip has length 5. Because there are five coordinates in each of the two input vectors, 
zip(*vectors1) contains five tuples, having two elements each. Likewise, zip(*vectors2) has length 2; the two 
entries of zip(*vectors2) are tuples containing all of the x components and all of the y components, respectively. 
 

 
Mini-project 3.5: The following comprehension creates a list of 24 Python vectors: 
from math import sin, cos, pi 

vs = [(sin(pi*t/6), cos(pi*t/6), 1.0/3) for t in range(0,24)] 

What is the sum of the 24 vectors? Draw all 24 of them tip-to-tail as Arrow3D objects. 
Solution: Drawing these vectors tip-to-tail ends up producing a helix shape: 
from math import sin, cos, pi 

vs = [(sin(pi*t/6), cos(pi*t/6), 1.0/3) for t in range(0,24)] 

 

running_sum = (0,0,0) #<1> 

arrows = [] 

for v in vs: 

    next_sum = add(running_sum, v) #<2> 

    arrows.append(Arrow3D(next_sum, running_sum))  

    running_sum = next_sum 

print(running_sum) 

draw3d(*arrows) 

#1 Begins a running sum at (0,0,0), where the tip-to-tail addition starts 
#2 To draw each subsequent vector tip-to-tail, we add it to the running sum. The latest arrow connects the previous 
running sum to the next. 

 
Finding the vector sum of 24 vectors in 3D 
The sum is  
(-4.440892098500626e-16, -7.771561172376096e-16, 7.9999999999999964) 
which is approximately (0, 0, 8). 
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Exercise 3.6: Write a function scale(scalar,vector) that returns the input scalar times the input vector. 
Specifically, write it so it works on 2D or 3D vectors, or vectors of any number of coordinates. 
Solution: With a comprehension, we multiply each coordinate in the vector by the scalar. This is a generator 
comprehension that is converted to a tuple: 
def scale(scalar,v): 

    return tuple(scalar * coord for coord in v) 

 

 
Exercise 3.7: Let u = (1, -1, -1) and v = (0, 0, 2). What is the result of u + ½ * (v − u)? 
Solution: With u = (1, -1, -1) and v = (0, 0, 2), we can first compute (v − u) = (0 − 1, 0 − (-1), 2 − (-1)) = (-1, 1, 3). Then ½ 
* (v − u) is (-½, ½, 3/2). The final desired result of u + ½ * (v − u) is then (½, -½, ½). Incidentally, this is the point 
exactly halfway between the point u and the point v. 
 

 
Exercise 3.8: Try to find the answers for this exercise without using code and then check your work. What is the length 
of the 2D vector (1, 1)? What is the length of the 3D vector (1, 1, 1)? We haven’t yet talked about 4D vectors, but these 
have four coordinates instead of two or three. If you had to guess, what is the length of the 4D vector with coordinates 
(1, 1, 1, 1)? 

Solution: The length of (1, 1) is √12 + 12 = √2. The length of (1,1,1) is √12 + 12 + 12 = √3. As you might guess, we use 
the same distance formula for higher dimensional vectors as well. The length of (1, 1, 1, 1) follows the same pattern: it 

is √12 + 12 + 12 + 12 = √4, which is 2. 
 

 
Mini-project 3.9: The coordinates 3, 4, 12 in any order create a vector of length 13, a whole number. This is unusual 
because most numbers are not perfect squares, so the square root in the length formula typically returns an irrational 
number. Find a different triple of whole numbers that define coordinates of a vector with a whole number length. 
Solution: The following code searches for triples of descending whole numbers less than 100 (an arbitrary choice): 
def vectors_with_whole_number_length(max_coord=100): 

    for x in range(1,max_coord): 

        for y in range(1,x+1): 

            for z in range(1,y+1): 

                if length((x,y,z)).is_integer(): 

                    yield (x,y,z) 
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It finds 869 vectors with whole number coordinates and whole number lengths. The shortest of these is (2, 2, 1) with 
length exactly 3, and the longest is (99, 90, 70) with length exactly 150. 
 

 
Exercise 3.10: Find a vector in the same direction as (-1, -1, 2) but which has length 1. (Hint: find the appropriate scalar 
to multiply the original vector to change its length appropriately.) 
Solution: The length of (-1, -1, 2) is about 2.45, so we’ll have to take a scalar multiple of this vector with (1/2.45) to 
make its length 1: 
>>> length((-1,-1,2)) 

2.449489742783178 

>>> s = 1/length((-1,-1,2)) 

>>> scale(s,(-1,-1,2)) 

(-0.4082482904638631, -0.4082482904638631, 0.8164965809277261) 

>>> length(scale(s,(-1,-1,2))) 

1.0 
Rounding to the nearest hundredth in each coordinate, the vector is (-0.41, -0.41, 0.82). 
 

3.3 The dot product: Measuring vector alignment 
One kind of multiplication we’ve already seen for vectors is scalar multiplication, combining a 
scalar (a real number) and a vector to get a new vector. We haven’t yet talked about any ways 
to multiply one vector with another. It turns out there are two important ways to do this, and 
these both give important geometric insights. One is called the dot product and we write it with 
a dot operator (for example, u ∙ v), while the other is called the cross product (for example, u 
× v). For numbers, these symbols mean the same thing, so for instance 3 · 4 = 3 × 4. For two 
vectors, the operations u ∙ v and u × v aren’t just different notations, these mean completely 
different things. 

The dot product takes two vectors and returns a scalar, while the cross product takes two vectors 
and returns another vector. Both, however, are operations that help us reason about lengths 
and directions of vectors in 3D. Let’s start by focusing on the dot product. 

3.3.1 Picturing the dot product 

The dot product (also called the inner product) is an operation on two vectors that returns a 
scalar. In other words, given two vectors u and v, the result of u ∙ v is a real number. The dot 
product works on vectors in 2D, 3D, or any number of dimensions. You can think of it as 
measuring “how aligned” the pair of input vectors are. Let’s first look at some vectors in the x,y 
plane and show their dot products to give you some intuition for how this operation works. 

The vectors u and v have lengths 4 and 5, respectively, and they point in nearly the same 
direction. Their dot product is positive, meaning they are aligned. 
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Figure 3.20: Two vectors that are relatively aligned give a large positive dot product. 

Two vectors that are pointing in similar directions have a positive dot product, and the larger 
the vectors, the larger the product. Smaller vectors that are similarly aligned have a smaller but 
still positive dot product. The new vectors u and v both have a length of 2 (figure 3.21). 

 
Figure 3.21: Two shorter vectors pointing in similar directions give a smaller but still positive dot product. 

By contrast, if two vectors point in opposite or near opposite directions, their dot product is 
negative (figures 3.22 and 3.23). The bigger the magnitude of the vectors, the more negative 
their dot product. 
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Figure 3.22: Vectors pointing in opposing directions have a negative dot product. 

 
Figure 3.23: Shorter vectors pointing in opposing directions have a smaller but still negative dot product. 

Not all pairs of vectors clearly point in similar or opposite directions, and the dot product detects 
this. As figure 3.24 shows, if two vectors point in exactly perpendicular directions, their dot 
product is zero regardless of their lengths. 
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Figure 3.24: Perpendicular vectors always have a dot product of zero. 

This turns out to be one of the most important applications of the dot product: it lets us compute 
whether two vectors are perpendicular without doing any trigonometry. This perpendicular case 
also serves to separate the other cases: if the angle between two vectors is less than 90°, the 
vectors then have a positive dot product. If the angle is greater than 90°, they have a negative 
dot product. While I haven’t yet told you how to compute a dot product, you now know how to 
interpret the value. We move on to computing it next. 

3.3.2 Computing the dot product 

Given the coordinates for two vectors, there’s a simple formula to compute the dot product: 
multiply the corresponding coordinates and then add the products. For instance in the dot 
product (1, 2, -1) ∙ (3, 0, 3), the product of the x-coordinate is 3, the product of the y-coordinate 
is 0, and the product of the z-coordinate is -3. The sum is 3 + 0 + (-3) = 0, so the dot product 
is zero. If my claim is correct, these two vectors should be perpendicular. Drawing them (figure 
3.25) demonstrates this, if you look at them from the right perspective! 
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Figure 3.25: Two vectors with a dot product of zero are indeed perpendicular in 3D. 

Our perspective can be misleading in 3D, making it all the more valuable to be able to compute 
relative directions rather than eyeballing them. As another example, figure 3.26 shows that the 
2D vectors (2, 3) and (4, 5) lie in similar directions in the x,y plane. The product of the x-
coordinates is 2 * 4 = 8, while the product of the y-coordinates is 3 * 5 = 15. The sum 8 + 15 
= 23 is the dot product. As a positive number, this result confirms that the vectors are separated 
by less than 90°. These vectors have the same relative geometry whether we consider them in 
2D or in 3D as the vectors (2, 3, 0) and (4, 5, 0) that happen to lie in the plane where z = 0. 

 
Figure 3.26: Another example of computing a dot product 

In Python, we can write a dot product function that handles any pair of input vectors as long as 
they all have the same number of coordinates. For example, 

def dot(u,v): 
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    return sum([coord1 * coord2 for coord1,coord2 in zip(u,v)]) 

This code uses Python’s zip function to pair the appropriate coordinates, then multiplies each 
pair in a comprehension, and adds the resulting list. Let’s use this to further explore how the 
dot product behaves. 

3.3.3 Dot products by example 

It’s not surprising that two vectors lying on different axes have zero dot product. We know they 
are perpendicular: 

>>> dot((1,0),(0,2)) 
0 
>>> dot((0,3,0),(0,0,-5)) 
0 

We can also confirm that longer vectors give longer dot products. For instance, scaling either 
input vector by a factor of 2 doubles the output of the dot product: 

>>> dot((3,4),(2,3)) 
18 
>>> dot(scale(2,(3,4)),(2,3)) 
36 
>>> dot((3,4),scale(2,(2,3))) 
36 

It turns out the dot product is proportional to each of the lengths of its input vectors. If you take 
the dot product of two vectors in the same direction, the dot product is precisely equal to the 
product of the lengths. For instance, (4, 3) has a length of 5 and (8, 6) has a length of 10. The 
dot product is equal to 5 * 10: 

>>> dot((4,3),(8,6)) 
50 

Of course, the dot product is not always equal to the product of the lengths of its inputs. The 
vectors (5, 0), (-3, 4), (0, -5), and (-4, -3) all have the same length of 5 but different dot 
products with the original vector (4, 3) as shown in figure 3.27. 
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Figure 3.27: Vectors of the same length have different dot products with the vector (4, 3), depending on their 
direction. 

The dot product of two vectors of length 5 ranges from 5 * 5 = 25 when they are aligned to -
25, when they point in opposite directions. In the next set of exercises, I invite you to convince 
yourself that the dot product of two vectors can range from the product of the lengths down to 
the opposite of that value. 

3.3.4 Measuring angles with the dot product 

We’ve seen that the dot product varies based on the angle between two vectors. Specifically, 
the dot product u ∙ v ranges from 1 to -1 times the product of the lengths of u and v as the 
angle ranges from 0 to 180°. We already saw a function that behaves that way, namely the 
cosine function. It turns out that the dot product has an alternate formula. If |u| and |v| denote 
the lengths of vectors u and v, the dot product is given by 

u ∙ v = |u| ∙ |v| ∙ cos(θ) 

where θ is the angle between the vectors u and v. In principle this gives us a new way to 
compute a dot product. We could measure the lengths of two vectors and then measure the 
angle between them to get the result. Suppose, as in figure 3.28, we have two vectors of known 
lengths 3 and 2, respectively, and using our protractor, discovered that they are 75° apart. 
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Figure 3.28: Two vectors of lengths 3 and 2, respectively, at 75° apart 

The dot product for the two vectors in figure 3.28 is 3 ∙ 2 ∙ cos(75°). With the appropriate 
conversion to radians, we can compute this in Python to be about 1.55: 

>>> from math import cos,pi 
>>> 3 * 2 * cos(75 * pi / 180) 
1.5529142706151244 

When doing computations with vectors, it’s more common to start with coordinates and to 
compute angles from them. We can combine both of our formulas to recover an angle: first we 
compute the dot product and lengths using coordinates, then we solve for the angle. 

Let’s find the angle between the vectors (3, 4) and (4, 3). Their dot product is 24, and each of 
their lengths is 5. Our new dot product formula tells us that: 

(3, 4) ∙ (4, 3) = 24 = 5 ∙ 5 ∙ cos(θ) = 25 ∙ cos(θ) 

From 24 = 25 ∙ cos(θ), we can simplify it to cos(θ) = 24/25. Using Python’s math.acos, we find 
that a θ value of 0.284 radians or 16.3° gives us a cosine of 24/25. 

This exercise reminds us why we don’t need the dot product in 2D. In chapter 2, we showed 
how to get the angle of a vector from the positive x-axis. Using that formula creatively, we could 
find any angle we want in the plane. The dot product really starts to shine in 3D, where a change 
of coordinates can’t help us as much. 

For instance, we can use the same formula to find the angle between (1, 2, 2) and (2, 2, 1). 
The dot product is 1 ∙ 2 + 2 ∙ 2 + 2 ∙ 1 = 8 and the lengths are both 3. This means 8 = 3 ∙ 3 ∙ 
cos(θ), so cos(θ) = 8/9 and θ = 0.476 radians or 27.3°. 

This process is the same in 2D or 3D, and it’s one we’ll use over and over. We can save some 
effort by implementing a Python function to find the angle between two vectors. Because neither 
our dot function nor our length function has a hard-coded number of dimensions, this new 
function won’t either. We can make use of the fact that u ∙ v = |u| ∙ |v| ∙ cos(θ) and, therefore, 
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and 

 
This formula translates neatly to Python code as follows: 

def angle_between(v1,v2): 
    return acos( 
                dot(v1,v2) / 
                (length(v1) * length(v2)) 
            ) 

Nothing in this Python code depends on the number of dimensions of the vectors v1 and v2. 
These could both be tuples of 2 coordinates or tuples of 3 coordinates (or, in fact, tuples of 4 or 
more coordinates, which we discuss in the coming chapters). By contrast, the next vector 
product we meet (the cross product) only works in three dimensions. 

3.3.5 Exercises 

 
Exercise 3.11: Based on the following picture, rank u ∙ v, u ∙ w, and v ∙ w from largest to smallest: 

 
Solution: The product u ∙ v is the only positive dot product because u and v are the only pair with less than a right angle 
between them. Further, u ∙ w is smaller (more negative) than v ∙ w because u is both bigger and further from w, so u ∙ v > 
v ∙ w > u ∙ w. 
 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Exercise 3.12: What is the dot product of (-1, -1, 1) and (1, 2, 1)? Are these two 3D vectors separated by more than 90°, 
less than 90°, or exactly 90°? 
Solution: (-1, -1, 1) and (1, 2, 1) have the dot product -1 * 1 + -1 * 2 + 1 * 1 = -2. Because this is a negative number, the 
two vectors are more than 90° apart. 
 

 
Mini-project 3.13: For two 3D vectors u and v, the values of (2u) ∙ v and u ∙ (2v) are both equal to 2(u ∙ v). In this case, u ∙ v 
= 18 and both (2u) ∙ v and u ∙ (2v) are 36, twice the original result. Show that this works for any real number s, not just 2. 
In other words, show that for any s the values of (su) ∙ v and u ∙ (sv) are both equal to s(u ∙ v). 
Solution: Let’s name the coordinates of u and v, say u = (a, b, c) and v = (d, e, f). Then u ∙ v = ad + be + cf. Because su = 
(sa, sb, sc) and sv = (sd, se, sf), we can show both of the results by expanding the dot products: 

 
Proving that scalar multiplication scales the result of the dot product accordingly 
And the other product works the same way: 

 
Proving the same fact holds for the second vector input to the dot product. 
 

 
Mini-project 3.14: Explain algebraically why the dot product of a vector with itself is the square of its length. 
Solution: If a vector has coordinates (a, b, c), then the dot product with itself is a ∙ a + b ∙ b + c ∙ c. Its length is 
√a ⋅ a + b ⋅ b + c ⋅ c, so this is indeed the square. 
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Mini-project 3.15: Find a vector u of length 3 and a vector v of length 7 such that u ∙ v = 21. Find another pair of vectors 
u and v such that u ∙ v = -21. Finally, find three more pairs of vectors of respective lengths 3 and 7 and show that all of 
their lengths lie between -21 and 21. 
Solution: Two vectors in the same direction (for instance, along the positive x-axis) will have the highest possible dot 
product: 
>>> dot((3,0),(7,0)) 

21 

Two vectors in the opposite direction (for instance, the positive and negative y directions) will have the lowest possible 
dot product: 
>>> dot((0,3),(0,-7)) 

-21 
Using polar coordinates, we can easily generate some more vectors of length 3 and 7 with random angles: 
from vectors import to_cartesian 

from random import random 

from math import pi 

 

def random_vector_of_length(l): 

    return to_cartesian((l, 2*pi*random())) 

 

pairs = [(random_vector_of_length(3), random_vector_of_length(7)) 

            for i in range(0,3)] 

for u,v in pairs: 

    print("u = %s, v = %s" % (u,v)) 

    print("length of u: %f, length of v: %f, dot product :%f" % 

                (length(u), length(v), dot(u,v))) 
 

 
Exercise 3.16: Let u and v be vectors, with |u| = 3.61 and |v| = 1.44. If the angle between u and v is 101.3°, what is u ∙ 
v? 
a. 5.198 
b. 5.098 
c. -1.019 
d. 1.019 
Solution: Again, we can plug these values into the new dot product formula and, with the appropriate conversion to 
radians, evaluate the result in Python: 
>>> 3.61 * 1.44 * cos(101.3 * pi / 180) 

-1.0186064362303022 
Rounding to three decimal places, the answer agrees with c. 
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Mini-project 3.17: Find the angle between (3, 4) and (4, 3) by converting them to polar coordinates and taking the 
difference of the angles. The answer is  
a. 1.569 
b. 0.927 
c. 0.643 
d. 0.284 
Hint: The result should agree with the value from the dot product formula. 
Solution: The vector (3, 4) is further from the positive x-axis counterclockwise, so we subtract the angle of (4, 3) from 
the angle of (3, 4) to get our answer. It matches answer d exactly: 
>>> from vectors import to_polar 

>>> r1,t1 = to_polar((4,3)) 

>>> r2,t2 = to_polar((3,4)) 

>>> t1-t2 
-0.2837941092083278 

>>> t2-t1 
0.2837941092083278 

 

 
Exercise 3.18: What is the angle between (1, 1, 1) and (-1, -1, 1) in degrees? 
a. 180° 
b. 120° 
c. 109.5° 
d. 90° 

Solution: The lengths of both vectors are √3 or approximately 1.732. Their dot product is 1 ∙ (-1) + 1 ∙ (-1) + 1 ∙ 1 = -1, so -

1 = √3 ⋅ √3 ⋅ cos(θ). Therefore, cos(θ) = -1/3. This makes the angle approximately 1.911 radians or 109.5° (answer c). 
 

3.4 The cross product: Measuring oriented area 
As previously introduced, the cross product takes two 3D vectors u and v as inputs, and its 
output u × v is another 3D vector. It is similar to the dot product in that the lengths and relative 
directions of the input vectors determine the output, but is different in that the output has not 
only a magnitude but also a direction. We need to think carefully about the concept of direction 
in 3D to understand the power of the cross product. 

3.4.1 Orienting ourselves in 3D 

When I introduced the x-, y-, and z-axes at the beginning of this chapter, I made two clear 
assertions. First, I promised that the familiar x,y plane exists within the 3D world. Second, I set 
the z direction to be perpendicular to the x,y plane with the x,y plane living where z = 0. What 
I didn’t announce clearly was that the positive z direction was up instead of down.   
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In other words, if we look at the x,y plane from the usual perspective, we would see the positive 
z-axis emerging out of the plane toward us. The other choice we could make is sending the 
positive z-axis away from us (figure 3.29). 

 
Figure 3.29: Positioning ourselves in 3D to see the x,y plane as we saw it in chapter 2. When looking at the x,y 
plane, we chose the positive z-axis to point toward us as opposed to away from us. 

The difference here is not a matter of perspective; the two choices represent different 
orientations of 3D space, and they are distinguishable from any perspective. Suppose we are 
floating at some positive z-coordinate like the stick figure on the left in figure 3.29. We should 
see the positive y-axis positioned a quarter-turn counterclockwise from the positive x-axis; 
otherwise, the axes are arranged in the wrong orientation. 

Plenty of things in the real world have orientations and don’t look identical to their mirror images. 
For instance, left and right shoes have identical size and shape but different orientations. A plain 
coffee mug does not have an orientation: we cannot look at two pictures of an unmarked coffee 
mug and decide if they are different. But as figure 3.30 shows, two coffee mugs with graphics 
on opposite sides are distinguishable. 
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Figure 3.30: A mug with no image is the same object as its mirror image. A mug with an image on one side is 
not the same as its mirror image. 

The readily available object most mathematicians use to detect orientation is a hand. Our hands 
are oriented objects, so we can tell right hands from left hands even if they were unluckily 
detached from our bodies. Can you tell if the hand in figure 3.31 is a right or left hand? 

 
Figure 3.31: Is this a right or left hand? 

Clearly, it’s a right hand: we don’t have fingernails on our left-hand fingertips! Mathematicians 
can use their hands to distinguish the two possible orientations of coordinate axes, and they call 
the two possibilities right-handed and left-handed orientations. Here’s the rule as illustrated in 
figure 3.32: if you point your right index finger along the positive x-axis and curl your remaining 
fingers toward the positive y-axis, your thumb tells you the direction of the positive z-axis. 
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Figure 3.32: The right-hand rule helps us remember the orientation we’ve chosen. 

This is called the right-hand rule, and if it agrees with your axes, then you are (correctly!) using 
the right-handed orientation. Orientation matters! If you are writing a program to steer a drone 
or control a laparoscopic surgery robot, you need to keep your ups, downs, lefts, rights, 
forwards, and backwards consistent. The cross product is an oriented machine, so it can help 
us keep track of orientation throughout all of our computations. 

3.4.2 Finding the direction of the cross product 

Again, before I tell you how to compute the cross product, I want to show you what it looks like. 
Given two input vectors, the cross product outputs a result that is perpendicular to both. For 
instance, if u = (1,0,0) and v = (0,1,0), then it happens that the cross product u × v is (0, 0, 
1) as shown in figure 3.33. 

 
Figure 3.33: The cross product of u = (1, 0, 0) and v = (0, 1, 0) 
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In fact, as figure 3.34 shows, any two vectors in the x,y plane have a cross product that lies 
along the z-axis. 

 
Figure 3.34: The cross product of any two vectors in the x,y plane lies on the z-axis. 

This makes it clear why the cross product doesn’t work in 2D: it returns a vector that lies outside 
of the plane containing the two input vectors. We can see the output of the cross product is 
perpendicular to both inputs even if they don’t lie in the x,y plane (figure 3.35). 

 
Figure 3.35: The cross product always returns a vector that is perpendicular to both inputs. 
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But there are two possible perpendicular directions, and the cross product selects only one. For 
instance, the result of (1, 0, 0) × (0, 1, 0) happens to be (0, 0, 1), pointing in the positive z 
direction. Any vector on the z-axis, positive or negative, would be perpendicular to both of these 
inputs. Why does the result point in the positive direction?   

Here’s where orientation comes in: the cross product obeys the right-hand rule as well. Once 
you’ve found the direction perpendicular to two input vectors u and v, the cross product u × v 
lies in a direction that puts the three vectors u, v, and u × v in a right-handed configuration. 
That is, we can point our right index finger in the direction of u, curl our other fingers toward v, 
and our thumb points in the direction of u × v (figure 3.36). 

 
Figure 3.36: The right-hand rule tells us which perpendicular direction the cross product points toward. 

When input vectors lie on two coordinate axes, it’s not too hard to find the exact direction their 
cross product will point: it’s one of the two directions along the remaining axis. In general, it’s 
hard to describe a direction perpendicular to two vectors without computing their cross product. 
This is one of the features that make it so useful once we see how to compute it. But a vector 
doesn’t just specify a direction; it also specifies a length. The length of the cross product encodes 
useful information as well. 

3.4.3 Finding the length of the cross product 

Like the dot product, the length of the cross product is a number that gives us information about 
the relative position of the input vectors. Instead of measuring how aligned two vectors are, it 
tells us something closer to “how perpendicular they are.” More precisely, it tells us how big of 
an area its two inputs span (figure 3.37). 
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Figure 3.37: The length of the cross product is equal to the area of a parallelogram. 

The parallelogram bounded by u and v as in figure 3.37 has an area that is the same as the 
length of the cross product u × v. For two vectors of given lengths, they span the most area if 
they are perpendicular. On the other hand, if u and v are in the same direction, they don’t span 
any area; the cross product has zero length. This is convenient: we can’t choose a unique 
perpendicular direction if the two input vectors are parallel. 

Paired with the direction of the result, the length of the result gives us an exact vector. Two 
vectors in the plane are guaranteed to have a cross product pointing in the +z or -z direction. 
We can see in figure 3.38 that the bigger the parallelogram that the plane vectors span, the 
longer the cross product. 

 
Figure 3.38: Pairs of vectors in the x,y plane have cross products of different sizes based on the area of the 
parallelogram these span. 

There’s a trigonometric formula for the area of this parallelogram: if u and v are separated by 
an angle θ, the area is |u| ∙ |v| ∙ sin(θ). We can put the length and direction together to see 
some simple cross products. For instance, what is the cross product of (0, 2, 0) and (0, 0, -2)? 
These vectors lie on the y- and z-axes, respectively, so to be perpendicular to both, the cross 
product must lie on the x-axis. Let’s find the direction of the result using the right-hand rule.   

Pointing in the direction of the first vector with our index finger (the positive y direction) and 
bending our fingers in the direction of the second vector (the negative z direction), we find our 
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thumb is in the negative x direction. The magnitude of the cross product is 2 ∙ 2 ∙ sin(90°) 
because the y- and z-axes meet at a 90° angle. (The parallelogram happens to be a square in 
this case, having a side length of 2). This comes out to 4, so the result is (-4, 0, 0): a vector of 
length 4 in the -x direction. 

It’s nice to convince ourselves that the cross product is a well-defined operation by computing 
it geometrically. But that’s not practical, in general, when vectors don’t always lie on an axis 
and it’s not obvious what coordinates you need to find a perpendicular result. Fortunately, 
there’s an explicit formula for the coordinates of the cross product in terms of the coordinates 
of its inputs. 

3.4.4 Computing the cross product of 3D vectors 

The formula for the cross product looks hairy at first glance, but we can quickly wrap it in a 
Python function and compute it with no sweat. Let’s start with coordinates for two vectors u and 
v. We could name the coordinates u = (a, b, c) and v = (d, e, f), but it’s clearer if we use better 
symbols: u = (ux, uy, uz) and v = (vx, vy, vz). It’s easier to remember that the number called vx 
is the x-coordinate of v than if we called it an arbitrary letter like d. In terms of these 
coordinates, the formula for the cross product is 

u × v = (uyvz − uzvy, uzvx − vzux, uxvy − uyvx) 

Or, in Python: 

def cross(u, v): 
    ux,uy,uz = u 
    vx,vy,vz = v 
    return (uy*vz - uz*vy, uz*vx - ux*vz, ux*vy - uy*vx) 

You can test-drive this formula in the exercises. Note that in contrast to most of the formulas 
we used so far, this one doesn’t appear to generalize well to other dimensions. It requires that 
the input vectors have exactly three components. 

This algebraic procedure agrees with the geometric description we built in this chapter. Because 
it tells us area and direction, the cross product helps us decide whether an occupant of 3D space 
would see a polygon floating in space with them. For instance, as figure 3.39 shows, an observer 
standing on the x-axis would not see the parallelogram spanned by u = (1, 1, 0) and v = (-2, 
1, 0). 
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Figure 3.39: The cross product can indicate whether a polygon is visible to an observer. 

In other words, the polygon in figure 3.39 is parallel to the observer’s line of sight. Using the 
cross product, we could tell this without drawing the picture. Because the cross product is 
perpendicular to the person’s line of sight, none of the polygon is visible. 

Now it’s time for our culminating project: building a 3D object out of polygons and drawing it 
on a 2D canvas. You’ll use all of the vector operations you’ve seen so far. In particular, the cross 
product will help you to decide which polygons are visible. 

3.4.5 Exercises 

 
Exercise 3.19: Each of the following diagrams show three mutually perpendicular arrows indicating positive x, y, and z 
directions. A 3D box is shown for perspective with the back of the box colored gray. Which of the four diagrams is 
compatible with the one we chose? That is, which shows the x-, y-, and z-axes as we’ve drawn them, even if from a 
different perspective? 

 
Which of these axes agrees with our orientation convention? 
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Solution: Looking down on diagram a from above, we’d see the x- and y-axis as usual, with the z-axis pointing toward us. 
The diagram that agrees with our orientation is a. 
In diagram b, the z-axis is coming toward us, while the +y direction is 90° clockwise from the +x direction. This does not 
agree with our orientation. 
If we looked at diagram c from a point in the positive z direction (from the left side of the box), we would see the +y 
direction 90° counterclockwise from the +x direction. Diagram c also agrees with our orientation. 
Looking at diagram d from the left of the box, the +z direction would be toward us and the +y direction would again be 
counterclockwise from the +x direction. This agrees with our orientation as well. 
 

 
Exercise 3.20: If you held up three coordinate axes in front of a mirror, would the image in the mirror have the same 
orientation or a different one? 
Solution: The mirror image has reversed orientation. From this perspective, the z- and y-axes stay pointing in the same 
directions. The x-axis is clockwise from the y-axis in the original, but in the mirror image, it moves to counterclockwise: 

 
The x-, y-, and z-axes and their mirror image 
 

 
Exercise 3.21: In what direction does the result of (0, 0, 3) × (0, -2, 0) point? 
Solution: If we point our right index finger in the direction of (0, 0, 3), the positive z direction, and curl our other fingers 
in the direction of (0, -2, 0), the negative y direction, our thumb points in the positive x direction. Therefore, (0, 0, 3) × 
(0, -2, 0) points in the positive x direction. 
 

 
Exercise 3.22: What are the coordinates of the cross product of (1, -2, 1) and (-6, 12, -6)? 
Solution: As negative scalar multiples of one another, these vectors point in opposite directions and don’t span any 
area. The length of the cross product is, therefore, zero. The only vector of length zero is (0, 0, 0), so that is the answer. 
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Mini-project 3.23: The area of a parallelogram is equal to the length of its base times its height as shown here: 

 
Given that, explain why the formula |u| ∙ |v| ∙ sin(θ) makes sense. 
Solution: In the diagram, the vector u defines the base, so the base length is |u|. From the tip of v to the base, we can 
draw a right triangle. The length of v is the hypotenuse, and the vertical leg of the triangle is the height we are looking 
for. By the definition of the sine function, the height is |v| ∙ sin(θ). 

 
The formula for the area of a parallelogram in terms of the sine of one of its angles 
Because the base length is |u| and the height is |v| ∙ sin(θ), the area of the parallelogram is indeed |u| ∙ |v| ∙ sin(θ). 
 

 
Exercise 3.24: What is the result of the cross product (1, 0, 1) × (-1, 0, 0)?  
a. (0, 1, 0) 
b. (0, -1, 0) 
c. (0, -1, -1) 
d. (0, 1, -1) 
Solution: These vectors lie in the x,z plane, so their cross product lies on the y-axis. Pointing our right index finger in the 
direction of (1, 0, 1) and curling our fingers toward (-1, 0, 0) requires our thumb to point in the -y direction. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Computing the cross product of (1, 0, 1) and (-1, 0, 0) geometrically 
We could find the lengths of the vectors and the angle between them to get the size of the cross product, but we 
already have the base and height from the coordinates. These are both 1, so the length is 1. The cross product is, 
therefore, (0, -1, 0), a vector of length 1 in the -y direction; the answer is b. 
 

 
Exercise 3.25: Use the Python cross function to compute (0, 0, 1) × v for a few different values of a second vector v. 
What is the z-coordinate of each result, and why? 
Solution: No matter what vector v is chosen, the z-coordinate is zero: 
>>> cross((0,0,1),(1,2,3)) 

(-2, 1, 0) 

>>> cross((0,0,1),(-1,-1,0)) 

(1, -1, 0) 

>>> cross((0,0,1),(1,-1,5)) 

(1, 1, 0) 

Because u = (0,0,1), both ux and uy are zero. This means the term uxvy − uyvx in the cross product formula is zero, 
regardless of the values vx and vy. Geometrically this makes sense: the cross product should be perpendicular to both 
inputs, and to be perpendicular to (0, 0, 1), the z component must be zero. 
 

 
Mini-project 3.26: Show algebraically that u × v is perpendicular to both u and v regardless of the coordinates of u and 
v. (Hint: show (u × v) ∙ u and (u × v) ∙ v by expanding these into coordinates). 
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Solution: Let u = (ux, uy, uz) and v = (vx, vy, vz) in the following equations. We can write (u × v) ∙ u in terms of coordinates 
as follows:  

 
Expanding the dot product of a cross product 
After we expand the dot product, we see that there are 6 terms. Each of these cancels out with one of the others. 

 
After fully expanding, all the terms cancel out. 
Because all of the terms cancel out, the result is zero. To save ”ink,” I won’t show the result of (u × v) ∙ v, but the same 
thing happens: six terms appear and cancel each other out, resulting in zero. This means that (u × v) is perpendicular to 
both u and v. 
 

3.5 Rendering a 3D object in 2D 
Let’s try using what we’ve learned to render a simple 3D shape called an octahedron. Whereas 
a cube has six faces, all of which are squares, an octahedron has eight faces, all of which are 
triangles. You can think of an octahedron as two, four-sided pyramids stacked on top of each 
other. Figure 3.40 shows the skeleton of an octahedron.  

 
Figure 3.40: The skeleton of an octahedron, a shape with eight faces and six vertices. The dotted lines show the 
edges of the octahedron on the opposite side from us.   

If this were a solid, we wouldn’t be able to see the opposite sides. Instead, we’d see four of the 
eight triangular faces as shown in figure 3.41. 
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Figure 3.41: Four numbered faces of the octahedron that are visible to us in its current position 

Rendering the octahedron comes down to identifying the four triangles we need to show and 
shading them appropriately. Let’s see how to do that. 

3.5.1 Defining a 3D object with vectors 

An octahedron is an easy example because it has only six corners or vertices. We can give them 
simple coordinates: (1, 0, 0), (0, 1, 0), (0, 0, 1) and their three opposite vectors as shown in 
figure 3.42. 

 
Figure 3.42: Vertices of an octahedron 

These six vectors define the boundaries of the shape but don’t provide all the information we 
need to draw it. We also need to decide which of these vertices connect to form edges of the 
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shape. For instance, the top point in figure 3.42 is (0, 0, 1) and it connects by an edge to all 
four points in the x,y plane (figure 3.43). 

 
Figure 3.43: Four edges of the octahedron indicated by arrows. 

These edges outline the top pyramid of the octahedron. Note that there is no edge from (0, 0, 
1) to (0, 0, -1) because that segment would lie within the octahedron, not on its outside. Each 
edge is defined by a pair of vectors: the start and end points of the edge as a line segment. For 
instance, (0, 0, 1) and (1, 0, 0) define one of the edges. 

Edges still aren’t enough data to complete the drawing. We also need to know which triples of 
vertices and edges define the triangular faces we want to fill with a solid, shaded color. Here’s 
where orientation comes in: we want to know not only which segments define faces of the 
octahedron, but also whether they face toward us or away from us. 

Here’s the strategy: we’ll model a triangular face as three vectors v1, v2, and v3, defining its 
edges. (Note that here I use subscripts 1, 2, and 3 to distinguish three different vectors, not 
components of the same vector.) Specifically, we’ll order v1, v2, and v3 such that (v2 − v1) × 
(v3 − v1) points outside the octahedron (figure 3.44). If an outward-pointing vector is aimed 
toward us, it means the face is visible from our perspective. Otherwise, the face is obscured and 
we won’t need to draw it. 
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Figure 3.44: A face of the octahedron. The three points defining the face are ordered so that (v2 − v1) × (v3 − v1) 
points outside of the octahedron. 

We can define the eight triangular faces as triples of three vectors v1, v2, and v3 as follows: 

octahedron = [ 
    [(1,0,0), (0,1,0), (0,0,1)], 
    [(1,0,0), (0,0,-1), (0,1,0)], 
    [(1,0,0), (0,0,1), (0,-1,0)], 
    [(1,0,0), (0,-1,0), (0,0,-1)], 
    [(-1,0,0), (0,0,1), (0,1,0)], 
    [(-1,0,0), (0,1,0), (0,0,-1)], 
    [(-1,0,0), (0,-1,0), (0,0,1)], 
    [(-1,0,0), (0,0,-1), (0,-1,0)], 
] 

The faces are actually the only data we need to render the shape; these contain the edges and 
vertices implicitly. For instance, we can get the vertices from the faces with the following 
function: 

def vertices(faces): 
    return list(set([vertex for face in faces for vertex in face])) 

3.5.2 Projecting to 2D 

To turn 3D points into 2D points, we must choose what 3D direction we are observing from. 
Once we have two 3D vectors defining “up” and “right” from our perspective, we can project 
any 3D vector onto them and get two components instead of three. The component function 
extracts the part of any 3D vector pointing in a given direction using the dot product: 

def component(v,direction): 
    return (dot(v,direction) / length(direction)) 
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With two directions hard-coded (in this case, (1, 0, 0) and (0, 1, 0)), we can establish a way to 
project from three coordinates down to two. This function takes a 3D vector or a tuple of three 
numbers and returns a 2D vector or a tuple of two numbers: 

def vector_to_2d(v): 
    return (component(v,(1,0,0)), component(v,(0,1,0))) 

We can picture this as “flattening” the 3D vector into the plane. Deleting the z component takes 
away any depth the vector has (figure 3.45). 

 
Figure 3.45: Deleting the z component of a 3D vector flattens it into the x,y plane. 

Finally, to take a triangle from 3D to 2D, we need only apply this function to all of the vertices 
defining a face: 

def face_to_2d(face): 
    return [vector_to_2d(vertex) for vertex in face] 

3.5.3 Orienting faces and shading 

To shade our 2D drawing, we pick a fixed color for each triangle according to how much it faces 
a given light source. Let’s say our light source lies at a vector of (1, 2, 3) from the origin. Then 
the brightness of a triangular face is decided by how close to perpendicular it is to the light. 
Another way to measure this is by how aligned a perpendicular vector to the face is with the 
light source. We don’t have to worry about computing colors; Matplotlib has a built-in library to 
do that for us. For instance, 

blues = matplotlib.cm.get_cmap('Blues') 

gives us a function called blues that maps numbers from 0 to 1 onto a spectrum of darker to 
brighter blue values. Our task is to find a number from 0 to 1 that indicates how bright a face 
should be. 

Given a vector perpendicular (or normal) to each face and a vector pointing to the light source, 
their dot product tells us how aligned they are. Moreover, because we’re only considering 
directions, we can choose vectors with length 1. Then, if the face is pointing toward the light 
source at all, the dot product will lie between 0 and 1. If it is further than 90° from the light 
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source, it will not be illuminated at all. This helper function takes a vector and returns another 
in the same direction but with length 1: 

def unit(v): 
    return scale(1./length(v), v) 

This second helper function takes a face and gives us a vector perpendicular to it: 

def normal(face): 
    return(cross(subtract(face[1], face[0]), subtract(face[2], face[0]))) 

Putting it all together, we have a function that draws all the triangles we need to render a 3D 
shape using our draw function. (I’ve renamed draw to draw2d and renamed the classes 
accordingly to distinguish them from their 3D counterparts.) 

def render(faces, light=(1,2,3), color_map=blues, lines=None): 
    polygons = [] 
    for face in faces: 
        unit_normal = unit(normal(face)) #1 
        if unit_normal[2] > 0: #2 
            c = color_map(1 - dot(unit(normal(face)),  

                          unit(light))) #3 
            p = Polygon2D(*face_to_2d(face),  

                          fill=c, color=lines) #4 
            polygons.append(p) 
    draw2d(*polygons,axes=False, origin=False, grid=None) 

#1 For each face, computes a vector of length 1 perpendicular to it 
#2 Only proceeds if the z component of this vector is positive, or in other words, if it points toward the viewer 
#3 The larger the dot product between the normal vector and the light source vector, the less shading 
#4 Specifies an optional lines argument for the edges of each triangle, revealing the skeleton of the shape we’re 

drawing 

With the following render function, it only takes a few lines of code to produce an octahedron. 
Figure 3.46 shows the result. 

render(octahedron, color_map=matplotlib.cm.get_cmap('Blues'), lines=black) 
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Figure 3.46: Four visible faces of the octahedron in shades of blue 

The shaded octahedron doesn’t look that special from the side, but adding more faces, we can 
tell that the shading is working (figure 3.47). You can find pre-built shapes with more faces in 
the source code for this book. 

 
Figure 3.47: A 3D shape with many triangular sides. The effect of the shading is more apparent. 
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3.5.4 Exercises 

 
Mini-project 3.27: Find pairs of vectors defining each of the 12 edges of the octahedron and draw all of the edges in 
Python. 
Solution: The top of the octahedron is (0, 0, 1). It connects to all four points in the x,y plane via four edges. Likewise, the 
bottom of the octahedron is (0, 0, -1) and it also connects to all four points in the x,y plane. Finally, the four points in the 
x,y plane connect to each other in a square: 
top = (0,0,1) 

bottom = (0,0,-1) 

xy_plane = [(1,0,0),(0,1,0),(-1,0,0),(0,-1,0)] 

edges = [Segment3D(top,p) for p in xy_plane] +\ 

            [Segment3D(bottom, p) for p in xy_plane] +\ 

            [Segment3D(xy_plane[i],xy_plane[(i+1)%4]) for i in range(0,4)]  

draw3d(*edges) 

 
The resulting edges of the octahedron 
 

 
Exercise 3.28: The first face of the octahedron is [(1, 0, 0), (0, 1, 0), (0, 0, 1)]. Is that the only valid order to write the 
vertices for this face? 
Solution: No, for instance [(0, 1, 0), (0, 0, 1), (1, 0, 0)] is the same set of three points, and the cross product still points 
in the same direction in this order. 
 

3.6 Summary 
• Whereas vectors in 2D have lengths and widths, vectors in 3D also have depths. 
• 3D vectors are defined with triples of numbers called x-, y-, and z-coordinates. They tell 
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us how far from the origin we need to travel in each direction to get to a 3D point. 
• As with 2D vectors, 3D vectors can be added, subtracted, and multiplied by scalars. We 

can find their lengths using a 3D analogy of the Pythagorean theorem. 
• The dot product is a way to multiply two vectors and get a scalar. It measures how 

aligned two vectors are, and we can use its value to find the angle between two vectors. 
• The cross product is a way to multiply two vectors and get a third vector that is 

perpendicular to both input vectors. The magnitude of the output of the cross product is 
the area of the parallelogram spanned by the two input vectors. 

• We can represent the surface of any 3D object as a collection of triangles, where each 
triangle is respectively defined by three vectors representing its vertices. 

• Using the cross product, we can decide which direction a triangle is visible from in 3D. 
This can tell us whether a viewer can see it or how illuminated it is by a given light source. 
By drawing and shading all of the triangles defining an object’s surface, we can make it 
look three-dimensional. 
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Transforming vectors and 

graphics 

This chapter covers 

• Transforming and drawing 3D objects by applying mathematical functions 
• Creating computer animations using transformations to vector graphics 
• Identifying linear transformations, which preserve lines and polygons 
• Computing the effects of linear transformations on vectors and 3D models 

With the techniques from the last two chapters and a little creativity, you can render any 2D or 
3D figure you can think of. Whole objects, characters, and worlds can be built from line segments 
and polygons defined by vectors. But, there’s still one thing standing in between you and your 
first feature-length, computer-animated film or life-like action video game—you need to be able 
to draw objects that change over time. 

Animation works the same way for computer graphics as it does for film: you render static 
images and then display dozens of them every second. When we see that many snapshots of a 
moving object, it looks like the image is continuously changing. In chapters 2 and 3, we looked 
at a few mathematical operations that take in existing vectors and transform them geometrically 
to output new ones. By chaining together sequences of small transformations, we can create 
the illusion of continuous motion. 

As a mental model for this, you can keep in mind our examples of rotating 2D vectors. You saw 
that you could write a Python function, rotate, that took in a 2D vector and rotated it by, say, 
45° in the counterclockwise direction. As figure 4.1 shows, you can think of the rotate function 
as a machine that takes in a vector and outputs an appropriately transformed vector. 
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Figure 4.1: Picturing a vector function as a machine with an input slot and output slot 

If we apply a 3D analogy of this function to every vector of every polygon defining a 3D shape, 
we can see the whole shape rotate. This 3D shape could be the octahedron from the previous 
chapter or a more interesting one like a teapot. In figure 4.2, this rotation machine takes a 
teapot as input and returns a rotated copy as its output. 

 
Figure 4.2: A transformation can be applied to every vector making up a 3D model, thereby transforming the 
whole model in the same geometric way. 

If instead of rotating by 45° once, we rotated by one degree 45 times, we could generate frames 
of a movie showing a rotating teapot (figure 4.3). 
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Figure 4.3: Rotating the teapot by 1° at a time, 45 times in a row, beginning with the upper left-hand corner 

Rotations turn out to be great examples to work with because when we rotate every point on a 
line segment by the same angle about the origin, we still have a line segment of the same 
length. As a result, when you rotate all the vectors outlining a 2D or 3D object, you can still 
recognize the object. 

I’ll introduce you to a broad class of vector transformations called linear transformations that, 
like rotations, send vectors lying on a straight line to new vectors that also lie on a straight line. 
Linear transformations have numerous applications in math, physics, and data analysis. It’s 
helpful to know how to picture them geometrically when you meet them again in these contexts. 

To visualize rotations, linear transformations, and other vector transformations in this chapter, 
we’ll upgrade to more powerful drawing tools. We’ll swap out Matplotlib for OpenGL, which is an 
industry standard library for high-performance graphics. Most OpenGL programming is done in 
C or C++, but we’ll use a friendly Python wrapper called PyOpenGL. We’ll also use a video game 
development library in Python called PyGame. Specifically, we’ll use the features in PyGame that 
make it easy to render successive images into an animation. The set up for all of these new 
tools is covered in appendix C, so we can jump right in and focus on the math of transforming 
vectors. If you want to follow along with the code for this chapter (which I strongly 
recommend!), then you should skip to appendix C and return here once you get the code 
working. 

4.1 Transforming 3D objects 
Our main goal in this chapter is taking a 3D object (like the teapot) and changing it to create a 
new 3D object that is visually different. In chapter 2, we already saw that we could translate or 
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scale each vector in a 2D dinosaur and the whole dinosaur shape would move or change in size 
accordingly. We take the same approach here. Every transformation we look at takes a vector 
as input and returns a vector as output, something like this pseudocode: 

def transform(v): 
    old_x, old_y, old_z = v 
    # ... do some computation here ... 
    return (new_x, new_y, new_z) 

Let’s start by adapting the familiar examples of translation and scaling from 2D to 3D. 

4.1.1 Drawing a transformed object 

If you’ve installed the dependencies described in appendix C, you should be able to run the file 
draw_teapot.py in the source code for chapter 4 (see appendix A for instructions to run a Python 
script from the command line). If it runs successfully, you should see a PyGame window that 
shows the image in figure 4.4. 

 
Figure 4.4: The result of running draw_teapot.py 

In the next few examples, we modify the vectors defining the teapot and then re-render it so 
that we can see the geometric effect. As a first example, we can scale all of the vectors by the 
same factor. The following function, scale2, multiplies an input vector by the scalar 2.0 and 
returns the result: 
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from vectors import scale 
def scale2(v): 
    return scale(2.0, v) 

This scale2(v) function has the same form as the transform(v) function given at the top of 
this section: when passed a 3D vector as input, scale2 returns a new 3D vector as output. To 
execute this transformation on the teapot, we need to transform each of its vertices. We can do 
this triangle by triangle. For each triangle that we use to build the teapot, we create a new 
triangle with the result of applying scale2 to the original vertices: 

original_triangles = load_triangles() #1 
scaled_triangles = [ 
    [scale2(vertex) for vertex in triangle] #2 
    for triangle in original_triangles #3 
] 

#1 Loads the triangles using the code from appendix C 
#2 Applies scale2 to each vertex in a given triangle to get new vertices 
#3 Does this for each triangle in the list of original triangles 

Now that we’ve got a new set of triangles, we can draw them by calling 
draw_model(scaled_triangles). Figure 4.5 shows the teapot after this call, and you can 
reproduce this in by running the file scale_teapot.py in the source code. 
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Figure 4.5: Applying scale2 to each vertex of each triangle gives us a teapot that is twice as big. 

This teapot looks bigger than the original, and in fact, it is twice as big because we multiplied 
each vector by 2. Let’s apply another transformation to each vector: translation by the vector 
(-1, 0, 0). 

Recall that “translating by a vector” is another way of saying “adding the vector,” so what I’m 
really talking about is adding (-1, 0, 0) to every vertex of the teapot. This should move the 
whole teapot one unit in the negative x direction, which is to the left from our perspective. This 
function accomplishes the translation for a single vertex: 

from vectors import add 
def translate1left(v): 
    return add((-1,0,0), v) 

Starting with the original triangles, we now want to scale each of their vertices as before and 
then apply the translation. Figure 4.6 shows the result. You can reproduce it with the source file 
scale_translate_teapot.py: 
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scaled_translated_triangles = [ 
    [translate1left(scale2(vertex)) for vertex in triangle] 
    for triangle in original_triangles 
] 

draw_model(scaled_translated_triangles) 

 
Figure 4.6: The teapot is bigger and moved to the left as we hoped! 

Different scalar multiples change the size of the teapot by different factors, and different 
translation vectors move the teapot to different positions in space. In the exercises that follow, 
you’ll have a chance to try different scalar multiples and translations, but for now, let’s focus on 
combining and applying more transformations. 

4.1.2 Composing vector transformations 

Applying any number of transformations sequentially defines a new transformation. In the 
previous section, for instance, we transformed the teapot by scaling it and then translating it. 
We can package this new transformation as its own Python function: 
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def scale2_then_translate1left(v): 
    return translate1left(scale2(v)) 

This is an important principle! Because vector transformations take vectors as inputs and return 
vectors as outputs, we can combine as many of them as we want by composition of functions. 
If you haven’t heard this term before, it means defining new functions by applying two or more 
existing ones in a specified order. If we picture the functions scale2 and translate1left as 
machines that take in 3D models and output new ones (figure 4.7), we can combine them by 
passing the outputs of the first machine as inputs to the second. 

 
Figure 4.7: Calling scale2 and then translate1left on a teapot to output a transformed version 

We can imagine hiding the intermediate step by welding the output slot of the first machine to 
the input slot of the second machine (figure 4.8).  

 
Figure 4.8: Welding the two function machines together to get a new one, which performs both transformations 
in one step 

We can think of the result as a new machine that does the work of both the original functions 
in one step. This “welding” of functions can be done in code as well. We can write a general-
purpose compose function that takes two Python functions (for vector transformations, for 
instance) and returns a new function, which is their composition: 

def compose(f1,f2): 
    def new_function(input): 
        return f1(f2(input)) 
    return new_function 

Instead of defining scale2_then_translate1left as its own function, we could write: 
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scale2_then_translate1left = compose(translate1left, scale2) 

You might have heard of the idea that Python treats functions as “first-class objects.” What is 
usually meant by this slogan is that Python functions can be assigned to variables, passed as 
inputs to other functions, or created on-the-fly and returned as output values. These are 
functional programming techniques, meaning that they help us build complex programs by 
combining existing functions to make new ones. 

There is some debate about whether functional programming is kosher in Python (or as a Python 
fan would say, whether or not functional programming is “Pythonic”). I won’t opine about coding 
style, but I use functional programming because functions, namely vector transformations, are 
our central objects of study. With the compose function covered, I’ll show you a few more 
functional “recipes” that justify this digression. Each of these is added in a new helper file called 
transforms.py in the source code for this book. 

Something we’ll be doing repeatedly is taking a vector transformation and applying it to every 
vertex in every triangle defining a 3D model. We can write a reusable function for this rather 
than writing a new list comprehension each time. The following polygon_map function takes a 
vector transformation and a list of polygons (usually triangles) and applies the transformation 
to each vertex of each polygon, yielding a new list of new polygons: 

def polygon_map(transformation, polygons): 
    return [ 
        [transformation(vertex) for vertex in triangle] 
        for triangle in polygons 
    ] 

With this helper function, we can apply scale2 to the original teapot in one line: 

draw_model(polygon_map(scale2, load_triangles())) 

The compose and polygon_map functions both take vector transformations as arguments, but 
it’s also useful to have functions that return vector transformations. For instance, it might have 
bothered you that we named a function scale2 and hard-coded the number two into its 
definition. A replacement for this could be a scale_by function that returns a scaling 
transformation for a specified scalar: 

def scale_by(scalar): 
    def new_function(v): 
        return scale(scalar, v) 
    return new_function 

With this function, we can write scale_by(2) and the return value would be a new function that 
behaves identically to scale2. While we’re picturing functions as machines with input and output 
slots, you can picture scale_by as a machine that takes numbers in its input slot and outputs 
new function machines from its output slot as shown in figure 4.9. 
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Figure 4.9: A function machine that takes numbers as inputs and produces new function machines as outputs 

As an exercise, you can write a similar translate_by function that takes a translation vector as 
input and returns a translation function as output. In the terminology of functional programming, 
this process is called currying. Currying takes a function that accepts multiple inputs and 
refactors it to a function that returns another function.  

The result is a programmatic machine that behaves identically but is invoked differently; for 
instance, scale_by(s)(v) gives the same result as scale(s,v) for any inputs s and v. The 
advantage is that scale(...) and add(...) accept different kinds of arguments, so the 
resulting functions, scale_by(s) and translate_by(w), are interchangeable. Next, we’ll think 
similarly about rotations: for any given angle, we can produce a vector transformation that 
rotates our model by that angle. 

4.1.3 Rotating an object about an axis 

You already saw how to do rotations in 2D in chapter 2: you convert the Cartesian coordinates 
to polar coordinates, increase or decrease the angle by the rotation factor, and then convert 
back. Even though this is a 2D trick, it is helpful in 3D because all 3D vector rotations are, in a 
sense, isolated in planes. Picture, for instance, a single point in 3D being rotated about the z-
axis. Its x- and y-coordinates change, but its z-coordinate remains the same. If a given point is 
rotated around the z-axis, it stays in a circle with a constant z-coordinate, regardless of the 
rotation angle (figure 4.10). 
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Figure 4.10: Rotating a point around the z-axis 

What this means is that we can rotate a 3D point around the z-axis by holding the z-coordinate 
constant and applying our 2D rotation function only to the x- and y-coordinates. We’ll work 
through the code here, and you can also find it in rotate_teapot.py in the source code. First, we 
write a 2D rotation function adapted from the strategy we used in chapter 2: 

def rotate2d(angle, vector): 
    l,a = to_polar(vector) 
    return to_cartesian((l, a+angle)) 

This function takes an angle and a 2D vector and returns a rotated 2D vector. Now, let’s create 
a function, rotate_z, that applies this function only to the x and y components of a 3D vector: 

def rotate_z(angle, vector): 
    x,y,z = vector 
    new_x, new_y = rotate2d(angle, (x,y)) 
    return new_x, new_y, z 

Continuing to think in the functional programming paradigm, we can curry this function. Given 
any angle, the curried version produces a vector transformation that does the corresponding 
rotation: 

def rotate_z_by(angle): 
    def new_function(v): 
        return rotate_z(angle,v) 
    return new_function 

Let’s see it in action. The following line yields the teapot in figure 4.11, which is rotated by 𝜋𝜋/4 
or 45°: 

draw_model(polygon_map(rotate_z_by(pi/4.), load_triangles())) 
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Figure 4.11: The teapot is rotated 45° counterclockwise about the z-axis. 

We can write a similar function to rotate the teapot about the x-axis, meaning the rotation 
affects only the y and z components of the vector: 

def rotate_x(angle, vector): 
    x,y,z = vector 
    new_y, new_z = rotate2d(angle, (y,z)) 
    return x, new_y, new_z 
 
def rotate_x_by(angle): 
    def new_function(v): 
        return rotate_x(angle,v) 
    return new_function 

In the function rotate_x_by, a rotation about the x-axis is achieved by fixing the x coordinate 
and executing a 2D rotation in the y,z plane. The following code draws a 90° or 𝜋𝜋/2 radian 
rotation (counterclockwise) about the x-axis, resulting in the upright teapot shown in figure 
4.12: 

draw_model(polygon_map(rotate_x_by(pi/2.), load_triangles())) 
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Figure 4.12: The teapot rotated by 𝛑𝛑/2 about the x-axis.  

You can reproduce figure 4.12 with the source file rotate_teapot_x.py. The shading is consistent 
among these rotated teapots; their brightest polygons are toward the top-right of the figures, 
which is expected because the light source remains at (1, 2, 3). This is a good sign that we are 
successfully moving the teapot and not just changing our OpenGL perspective as before. 

 It turns out that it’s possible to get any rotation we want by composing rotations in the x and 
z directions. In the exercises at the end of the section, you can try your hand at some more 
rotations, but for now, we’ll move on to other kinds of vector transformations.  

4.1.4 Inventing your own geometric transformations 

So far, I’ve focused on the vector transformations we already saw in some way in the preceding 
chapters. Now, let’s throw caution to the wind and see what other interesting transformations 
we can come up with. Remember, the only requirement for a 3D vector transformation is that 
it accepts a single 3D vector as input and returns a new 3D vector as its output. Let’s look at a 
few transformations that don’t quite fall in any of the categories we’ve seen so far. 
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For our teapot, let’s modify one coordinate at a time. This function stretches vectors by a (hard-
coded) factor of four, but only in the x direction: 

def stretch_x(vector): 
    x,y,z = vector 
    return (4.*x, y, z) 

The result is a long, skinny teapot along the x-axis or in the handle-to-spout direction (figure 
4.13). This is fully implemented in stretch_teapot.py. 

 
Figure 4.13: A teapot stretched along the x-axis.  

A similar stretch_y function elongates the teapot from top-to-bottom. You can implement 
stretch_y and apply it to a teapot yourself, and you should get the image in figure 4.14. 
Otherwise, you can look at the implementation in stretch_teapot_y.py in the source code. 
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Figure 4.14: Stretching the teapot in the y direction instead 

We can get even more creative, stretching the teapot by cubing the y-coordinate rather than 
just multiplying it by a number. This transformation gives the teapot a disproportionately 
elongated lid as implemented in cube_teapot.py and shown in figure 4.15: 

def cube_stretch_z(vector): 
    x,y,z = vector 
    return (x, y*y*y, z) 
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Figure 4.15: Cubing the vertical dimension of the teapot 

If we selectively add two of the three coordinates in the formula for the transformation, for 
instance the x and y coordinates, we can cause the teapot to slant. This is implemented in 
slant_teapot.py and shown in figure 4.16: 

def slant_xy(vector): 
    x,y,z = vector 
    return (x+y, y, z) 
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 Figure 4.16: Adding the y-coordinate to the existing x-coordinate causes the teapot to slant in the x direction. 

The point is not that any one of these transformations is important or useful, but that any 
mathematical transformation of the vectors constituting a 3D model have some geometric 
consequence on the appearance of the model. It is possible to go too crazy with the 
transformation, at which point the model can become too distorted to recognize or even to draw 
successfully. Indeed, some transformations are better-behaved in general, and we’ll classify 
them in the next section. 

4.1.5 Exercises 

 
Exercise 4.1: Implement a translate_by function (referred to in section 4.1.2), taking a translation vector as input 
and returning a translation function as output. 
Solution:  
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def translate_by(translation): 

    def new_function(v): 

        return add(translation,v) 

    return new_function 
 

 
Exercise 4.2: Render the teapot translated by 20 units in the negative z direction. What does the resulting image look 
like? 
Solution: We can accomplish this by applying translate_by((0,0,-20)) to every vector of every polygon with 
polgyon_map: 

draw_model(polygon_map(translate_by((0,0,-20)), load_triangles())) 
Remember, we are looking at the teapot from five units up the z-axis. This transformation brings the teapot 20 units 
further from us, so it looks much smaller than the original. You can find the complete implementation in 
translate_teapot_down_z.py in the source code. 

 
The teapot translated 20 units down the z-axis. It appears smaller because it is further from the viewpoint. 
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Mini-project 4.3: What happens to the teapot when you scale every vector by a scalar between 0 and 1? What happens 
when you scale it by a factor of -1? 
Solution: We can apply scale_by(0.5) and scale_by(-1) to see the results: 

draw_model(polygon_map(scale_by(0.5), load_triangles())) 

draw_model(polygon_map(scale_by(-1), load_triangles())) 

 
Left-to-right, the original teapot, the teapot scaled by 0.5, and the teapot scaled by -1. 
As you can see, scale_by(0.5) shrinks the teapot to half its original size. The action of scale_by(-1) seems to 
rotate the teapot by 180°, but the situation is a bit more complicated. It’s actually turned inside-out as well! Each 
triangle has been reflected, so each normal vector now points into the teapot rather than outward from its surface. 

 
Reflection changes the orientation of a triangle. The indexed vertices are in counterclockwise order on the left and 
clockwise order in the reflection on the right. The normal vectors to these triangles point in opposite directions. 
Rotating the teapot, you can see that it is not quite rendering correctly as a result. We should be careful with reflections 
of our graphics for this reason!  
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The rotated, reflected teapot does not look quite right. Some features appear but should be concealed. For instance, we 
can see both the lid and the hollow bottom in the top left frame. 
 

 
Exercise 4.4: First apply translate1left to the teapot and then apply scale2. How is the result different from the 
opposite order of composition? Why? 
Solution: We can compose these two functions in the specified order and then apply them with polygon_map: 

draw_model(polygon_map(compose(scale2, translate1left), load_triangles())) 
The result is that the teapot is still twice as large as the original, but this one is translated further to the left. This is 
because when a scaling factor of 2 is applied after a translation, the distance of the translation doubles as well. You 
can convince yourself by running the source files scale_translate_teapot.py and translate_scale_teapot.py and 
comparing the results. 

 
Scaling and then translating the teapot (left) vs. translating and then scaling (right) 
 

 
Exercise 4.5: What is the effect of the transformation compose(scale_by(0.4), scale_by(1.5))? 
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Solution: Applying this to a vector scales it by 1.5 and then by 0.4 for a net scaling factor of 0.6. The resulting figure will 
be 60% of the size of the original. 
 

 
Exercise 4.6: Modify the compose(f,g) function to compose(*args), which takes several functions as arguments 
and returns a new function that is their composition. 
Solution: 
def compose(*args): 

    def new_function(input): #1 

        state = input #2 

        for f in reversed(args): #3 

            state = f(state) #4 

        return state 

    return new_function 

#1 Starts defining the function that compose returns 
#2 Sets the current state equal to the input 
#3 Iterates over the input functions in reverse order because the inner functions of a composition are applied first. 
For example, compose(f,g,h)(x) should equal f(g(h(x))), so the first function to apply is h. 
#4 At each step, updates the state by applying the next function. The final state has all the functions applied in the 
correct order. 
 
To check our work, we can build some functions and compose them: 
def prepend(string): 

    def new_function(input): 

        return string + input 

    return new_function 

 

f = compose(prepend("P"), prepend("y"), prepend("t")) 
Then running f(“hon”) returns the string “Python”. In general, the constructed function f appends the string 
“Pyt” to whatever string it is given. 
 

 
Exercise 4.7: Write a curry2(f) function that takes a Python function f(x,y) with two arguments and returns a 
curried version. For instance, once you write g = curry2(f), the two expressions f(x,y) and g(x)(y) should 
return the same result. 
Solution: The return value should be a new function that, in turn, produces a new function when called: 
def curry2(f): 

    def g(x): 

        def new_function(y): 

            return f(x,y) 
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        return new_function 

    return g 

As an example, we could have built the scale_by function like this: 

>>> scale_by = curry2(scale) 

>>> scale_by(2)((1,2,3)) 

 

(2, 4, 6) 
 

 
Exercise 4.8: Without running it, what is the result of applying the transformation 
compose(rotate_z_by(pi/2),rotate_x_by(pi/2))? What if you switch the order of the composition? 

Solution: This composition is equivalent to a clockwise rotation by 𝜋𝜋/2 about the y-axis. Reversing the order gives a 
counterclockwise rotation by 𝜋𝜋/2 about the y-axis. 
 

 
Exercise 4.9: Write a function stretch_x(scalar,vector) that scales the target vector by the given factor but 
only in the x direction. Also write a curried version stretch_x_by so that stretch_x_by(scalar)(vector) 
returns the same result. 
Solution:  
def stretch_x(scalar,vector): 

    x,y,z = vector 

    return (scalar*x, y, z) 

 

def stretch_x_by(scalar): 

    def new_function(vector): 

        return stretch_x(scalar,vector) 

    return new_function 
 

4.2 Linear transformations 
The “well-behaved” vector transformations we’re going to focus on are called linear 
transformations. Along with vectors, linear transformations are the other main objects of study 
in linear algebra. Linear transformations are special transformations where vector arithmetic 
looks the same before and after the transformation. Let’s draw some diagrams to show exactly 
what that means. 
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4.2.1 Preserving vector arithmetic 

The two most important arithmetic operations on vectors are addition and scalar multiplication. 
Let’s return to our 2D pictures of these operations and see how they look before and after a 
transformation is applied. 

We can picture the sum of two vectors as the new vector we arrive at when we place them tip-
to-tail, or as the vector to the tip of the parallelogram they define. For instance, figure 4.17 
represents the vector sum u + v = w. 

 
Figure 4.17: Geometric demonstration of the vector sum u + v = w 

The question we want to ask is, if we apply the same vector transformation to all three of the 
vectors in this diagram, will it still look like a vector sum? Let’s try a vector transformation, 
which is a counterclockwise rotation about the origin, and call this transformation R. Figure 4.18 
shows u, v, and w rotated by the same angle by the transformation R. 
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Figure 4.187: After rotating u, v, and w by the same rotation R, the sum still holds. 

The rotated diagram is exactly the diagram representing the vector sum R(u) + R(v) = R(w). 
You can draw the picture for any three vectors u, v, and w, and as long as u + v = w and if 
you apply the same rotation transformation R to each of the vectors, you find that R(u) + R(v) 
= R(w) as well. To describe this property, we say that rotations preserve vector sums. 

Similarly, rotations preserve scalar multiples. If v is a vector and sv is a multiple of v by a scalar 
s, then sv points in the same direction but is scaled by a factor of s. If we rotate v and sv by 
the same rotation R, we’ll see that R(sv) is a scalar multiple of R(v) by the same factor s (figure 
4.19). 

 
Figure 4.19: Scalar multiplication is preserved by rotation. 
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Again, this is only a visual example and not a proof, but you’ll find that for any vector v, scalar 
s, and rotation R, the same picture holds. Rotations or any other vector transformations that 
preserve vector sums and scalar multiples are called linear transformations. 

 
Linear transformation 
A linear transformation is a vector transformation T that preserves vector addition and scalar multiplication. That is, for 
any input vectors u and v, we have 
T(u) + T(v) = T(u + v) 
and for any pair of a scalar s and a vector v, we have 
T(sv) = sT(v) 
 

Make sure you pause to digest this definition; linear transformations are so important that the 
whole subject of linear algebra is named after them. To help you recognize linear 
transformations when you see them, we’ll look at a few more examples. 

4.2.2 Picturing linear transformations 

First, let’s look at a counterexample: a vector transformation that’s not linear. Such an example 
is a transformation S(v) that takes a vector v = (x, y) and outputs a vector with both coordinates 
squared: S(v) = (x2, y2). As an example, let’s look at the sum of u = (2, 3) and v = (1, -1). The 
sum is (2, 3) + (1, -1) = (3, 2). This is shown with vector addition in figure 4.20. 

 
Figure 4.20: Picturing the vector sum of u = (2, 3) and v = (1, -1), u + v = (3, 2) 

Now let’s apply S to each of these: S(u) = (4, 9), S(v) = (1, 1), and S(u + v) = (9, 4). Figure 
4.21 clearly shows that S(u) + S(v) does not agree with S(u + v). 
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Figure 4.21: S does not respect sums! S(u) + S(v) is far from S(u + v). 

As an exercise, you can try to find a counterexample demonstrating that S does not preserve 
scalar multiples either. For now, let’s examine another transformation. Let D(v) be the vector 
transformation that scales the input vector by a factor of 2. In other words, D(v) = 2v. This 
does preserve vector sums: if u + v = w, then 2u + 2v = 2w as well. Figure 4.22 provides a 
visual example. 

 

 
Figure 4.22: Doubling the lengths of vectors preserves their sums: if u + v = w, then D(u) + D(v) = D(w). 
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Likewise, D(v) preserves scalar multiplication. This is a bit harder to draw, but you can see it 
algebraically. For any scalar s, D(sv) = 2(sv) = s(2v) = sD(v).  

How about translation? Suppose B(v) translates any input vector v by (7, 0). Surprisingly, this 
is not a linear transformation. Figure 4.23 provides a visual counterexample where u + v = w, 
but B(v) + B(w) is not the same as B(v + w). 

 
Figure 4.23: The translation transformation B does not preserve a vector sum because B(u) + B(v) is not equal to 
B(u + v). 

It turns out that for a transformation to be linear, it must not move the origin (see why as an 
exercise later). Translation by any non-zero vector transforms the origin, which ends up at a 
different point, so it cannot be linear. 

Other examples of linear transformations include reflection, projection, shearing, and any 3D 
analogy of the preceding linear transformations. These are defined in the exercises section and 
you should convince yourself with several examples that each of these transformations 
preserves vector addition and scalar multiplication. With practice, you can recognize which 
transformations are linear and which are not. Next, we’ll look at why the special properties of 
linear transformations are useful. 

4.2.3 Why linear transformations? 

Because linear transformations preserve vector sums and scalar multiples, they also preserve a 
broader class of vector arithmetic operations. The most general operation is called a linear 
combination. A linear combination of a collection of vectors is a sum of scalar multiples of them. 
For instance, one linear combination of two vectors u and v would be 3u − 2v. Given three 
vectors u, v, and w, the expression 0.5u − v + 6w is a linear combination of u, v, and w. 
Because linear transformations preserve vector sums and scalar multiples, these preserve linear 
combinations as well.  
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We can restate this fact algebraically. If you have a collection of n vectors, v1, v2, …, vn, as well 
as any choice of n scalars, s1, s2, s3, …, sn, a linear transformation T preserves the linear 
combination: 

T(s1v1 + s2v2 + s3v3 + … + snvn) = s1T(v1) + s2T(v2) + s3T(v3) + … + snT(vn) 

One easy-to-picture linear combination we’ve seen before is ½ u + ½ v for vectors u and v, 
which is equivalent to ½ (u + v). Figure 4.24 shows that this linear combination of two vectors 
gives us the midpoint of the line segment connecting them. 

 
Figure 4.24: The midpoint between the tips of two vectors u and v can be found as the linear combination ½ u + 
½ v = ½ (u + v). 

This means linear transformations send midpoints to other midpoints: for example, T(½ u + ½ 
v) = ½ T(u) + ½ T(v), which is the midpoint of the segment connecting T(u) and T(v) as figure 
4.25 shows. 
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Figure 4.25: Because the midpoint between two vectors is a linear combination of the vectors, the linear 
transformation T sets the midpoint between u and v to the midpoint between T(u) and T(v). 

It’s less obvious, but a linear combination like 0.25u + 0.75v also lies on the line segment 
between u and v (figure 4.26). Specifically, this is the point 75% of the way from u to v. 
Likewise, 0.6u + 0.4v is 40% of the way from u to v, and so on.  

 
Figure 4.26: The point 0.25u + 0.75v lies on the line segment connecting u and v, 75% of the way from u to v. 
You can see this concretely with u = (-2, 2) and v = (6, 6).  

In fact, every point on the line segment between two vectors is a “weighted average” like this, 
having the form su + (1 − s)v for some number s between 0 and 1. To convince you, figure 
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4.27 shows the vectors su + (1 − s)v for u = (-1, 1) and v = (3, 4) for 10 values of s between 
0 and 1 and then for 100 values of s between 0 and 1. 

 
Figure 4.27: Plotting various weighted averages of (-1, 1) and (3, 4) with 10 values of s between 0 and 1 (left) 
and 100 values of s between 0 and 1 (right) 

The key idea here is that every point on a line segment connecting two vectors u and v is a 
weighted average and, therefore, a linear combination of points u and v. With this in mind, we 
can think about what a linear transformation does to a whole line segment.  

Any point on the line segment connecting u and v is a weighted average of u and v, so it has 
the form s · u + (1 − s) · v for some value s. A linear transformation, T, transforms u and v to 
some new vectors T(u) and T(v). The point on the line segment is transformed to some new 
point T(s · u + (1 − s) · v) or s · T(u) + (1 − s) · T(v). This is, in turn, a weighted average of 
T(u) and T(v), so it is a point that lies on the segment connecting T(u) and T(v) as shown in 
figure 4.28. 
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Figure 4.28: A linear transformation T transforms a weighted average of u and v to a weighted average of T(u) 
and T(v). The original weighted average lies on the segment connecting u and v, and the transformed one lies on 
the segment connecting T(u) and T(v). 

Because of this, a linear transformation T takes every point on the line segment connecting u 
and v to a point on the line segment connecting T(u) and T(v). This is a key property of linear 
transformations: they send every existing line segment to a new line segment. Because our 3D 
models are made up of polygons and polygons are outlined by line segments, linear 
transformations can be expected to preserve the structure of our 3D models to some extent 
(figure 4.29). 

 
Figure 4.29: Applying a linear transformation (rotation by 60°) to points making up a triangle. The result is a 
rotated triangle (on the left). 
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By contrast, if we use the non-linear transformation S(v) sending v = (x, y) to (x2, y2), we can 
see that line segments are distorted. This means that a triangle defined by vectors u, v, and w 
is not really sent to another triangle defined by S(u), S(v), and S(w) as shown in figure 4.30. 

 
Figure 4.30: Applying the non-linear transformation S does not preserve the straightness of edges of the 
triangle. 

In summary, linear transformations respect the algebraic properties of vectors, preserving 
sums, scalar multiples, and linear combinations. They also respect the geometric properties of 
collections of vectors, sending line segments and polygons defined by vectors to new ones 
defined by the transformed vectors. Next, we’ll see that linear transformations are not only 
special from a geometric perspective; they’re also easy to compute. 

4.2.4 Computing linear transformations 

In chapters 2 and 3, you saw how to break 2D and 3D vectors into components. For instance, 
the vector (4, 3, 5) can be decomposed as a sum (4, 0, 0) + (0, 3, 0) + (0, 0, 5). This makes 
it easy to picture how far the vector extends in each of the three dimensions of the space that 
we’re in. We can decompose this even further into a linear combination (figure 4.31): 

(4, 3, 5) = 4 · (1, 0, 0) + 3 · (0, 1, 0) + 5 · (0, 0, 1) 
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Figure 4.31: The 3D vector (4, 3, 5) as a linear combination of (1, 0, 0), (0, 1, 0), and (0, 0, 1) 

This might seem like a boring fact, but it’s one of the profound insights from linear algebra: any 
3D vector can be decomposed into a linear combination of three vectors (1, 0, 0), (0, 1, 0), and 
(0, 0, 1). The scalars appearing in this decomposition for a vector v are exactly the coordinates 
of v.  

The three vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are called the standard basis for three-
dimensional space. These are denoted e1, e2, and e3, so we could write the previous linear 
combination as (3, 4, 5) = 3 e1 + 4 e2 + 5 e3. When we’re working in 2D space, we call e1 = 
(1, 0) and e2 = (0, 1); so, for example, (7, -4) = 7 e1 − 4 e2 (figure 4.32). (When we say e1, 
we could mean (1, 0) or (1, 0, 0), but usually it’s clear which one we mean once we’ve 
established whether we’re working in two or three dimensions.)  

 
Figure 4.32: The 2D vector (7, -4) as a linear combination of the standard basis vectors e1 and e2. 
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We’ve only written the same vectors in a slightly different way, but it turns out this change in 
perspective makes it easy to compute linear transformations. Because linear transformations 
respect linear combinations, all we need to know to compute a linear transformation is how it 
affects standard basis vectors. 

Let’s look at a visual example (figure 4.33). Say we know nothing about a 2D vector 
transformation T except that it is linear and we know what T(e1) and T(e2) are. 

 
Figure 4.33: When a linear transformation acts on the two standard basis vectors in 2D, we get two new vectors 
as a result. 

For any other vector v, we automatically know where T(v) ends up. Say v = (3,2), then we can 
assert: 

T(v) = T(3e1 + 2e2) = 3T(e1) + 2T(e2) 

Because we already know where T(e1) and T(e2) are, we can locate T(v) as shown in figure 
4.34. 
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Figure 4.34: We can compute T(v) for any vector v as a linear combination of T(e1) and T(e2). 

To make this more concrete, let’s do a complete example in 3D. Say A is a linear transformation, 
and all we know about A is that A(e1) = (1, 1, 1), A(e2) = (1, 0, -1), and A(e3) = (0, 1, 1). If v 
= (-1, 2, 2), what is A(v)? Well, first we can expand v as a linear combination of the three 
standard basis vectors. Because v = (-1,2,2) = -e1 + 2e2 + 2e3, we can make the substitution: 

A(v) = A(-e1 + 2e2 + 2e3)  

Next, we can use the fact that A is linear and preserves linear combinations: 

= -A(e1) + 2A(e2) + 2A(e3) 

Finally, we can substitute in the known values of A(e1), A(e2), and A(e3), and simplify: 

= - (1, 1, 1) + 2 * (1, 0, -1) + 2 * (0, 1, 1) 

= (1, 1, -1) 

As proof we really know how A works, we can apply it to the teapot: 

Ae1 = (1,1,1) #1 
Ae2 = (1,0,-1) 
Ae3 = (0,1,1) 
 
def apply_A(v): #2 
    return add( #3 
        scale(v[0], Ae1), 
        scale(v[1], Ae2), 
        scale(v[2], Ae3) 
    ) 
 
draw_model(polygon_map(apply_A, load_triangles())) #4 
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#1 The known results of applying A to the standard basis vectors 
#2 Builds a function apply_A(v) that returns the result of A on the input vector v 
#3 The result should be a linear combination of these vectors, where the scalars are taken to be the coordinates of the 

target vector v. 
#4 Uses polygon_map to apply A to every vector of every triangle in the teapot  

Figure 4.35 shows the result of this transformation.  

 
Figure 4.35: In this rotated, skewed configuration, we see that the teapot does not have a bottom! 

The takeaway here is that a 2D linear transformation T is defined completely by the values of 
T(e1) and T(e2): that’s two vectors or four numbers in total. Likewise, a 3D linear transformation 
T is defined completely by the values of T(e1), T(e2), and T(e3), which are three vectors or nine 
numbers in total. In any number of dimensions, the behavior of a linear transformation is 
specified by a list of vectors or an array-of-arrays of numbers. Such an array-of-arrays is called 
a matrix, and we’ll see how to use matrices in the next chapter. 
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4.2.5 Exercises 

 
Exercise 4.10: Considering S again, the vector transformation that squares all coordinates, show algebraically that S(sv) 
= sS(v) does not hold for all choices of scalars s and 2D vectors v. 
Solution: Let v = (x, y). Then sv = (sx, sy) and S(sv) = (s2x2, s2y2) = s2 · (x2, y2) = s2 · S(v). For most values of s and most 
vectors v, S(sv) = s2 · S(v) won’t equal s · S(v). A specific counterexample is s = 2 and v = (1, 1, 1), where S(sv) = (4, 4, 4) 
while s · S(v) = (2, 2, 2). This counterexample shows that S is not linear. 
 

 
Exercise 4.11: Suppose T is a vector transformation and T(0) ≠ 0, where 0 represents the vector with all coordinates 
equal to zero. Why is T not linear according to the definition? 
Solution: For any vector v, v + 0 = v. For T to preserve vector addition, it should be that T(v + 0) = T(v) + T(0). Because T(v 
+ 0) = T(v), this requires that T(v) = T(v) + T(0) or 0 = T(0). Given that this is not the case, T cannot be linear. 
 

 
Exercise 4.12: The identity transformation is the vector transformation that returns the same vector it is passed. It is 
denoted with a capital I, so we could write its definition as I(v) = v for all vectors v. Explain why I is a linear 
transformation. 
Solution: For any vectors v and w, I(v + w) = v + w = I(v) + I(w), and for any scalar s, I(sv) = sv = s · I(v). These equalities 
show that the identity transformation preserves vector sums and scalar multiples. 
 

 
Exercise 4.13: What is the midpoint between (5, 3) and (-2, 1)? Plot all three of these points to see that you are correct. 
Solution: The midpoint is ½ (5, 3) + ½ (-2, 1) or (5/2, 3/2) + (-1, ½), which equals (3/2, 2). This is seen to be correct 
when drawn to scale in the diagram that follows: 

 
The midpoint of the segment connecting (5, 3) and (-2, 1) is (3/2, 2). 
 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Exercise 4.14: Consider again the non-linear transformation S(v) sending v = (x, y) to (x2, y2). Plot all 36 vectors v with 
integer coordinates 0 to 5 as points using the drawing code from chapter 2 and then plot S(v) for each of them. What 
happens geometrically to vectors under the action of S? 
Solution: The space between points is uniform to begin with, but in the transformed picture, the spacing increases in 
the horizontal and vertical directions as the x- and y-coordinates increase, respectively. 

 
The grid of points is initially uniformly spaced, but after applying the transformation S, the spacing varies between 
points, even on the same lines. 
 

 
Mini-project 4.15: Property-based testing is a type of unit testing that involves inventing arbitrary input data for a 
program and then checking that the outputs satisfy desired conditions. There are popular Python libraries like 
Hypothesis (available through pip) that make it easy to set this up. Using your library of choice, implement property-
based tests that check if a vector transformation is linear.  
Specifically, given a vector transformation T implemented as a Python function, generate a large number of pairs of 
random vectors and assert for all of those that their sum is preserved by T. Then, do the same thing for pairs of a scalar 
and a vector, and ensure that T preserves scalar multiples. You should find that linear transformations like 
rotate_x_by(pi/2) pass the test, but non-linear transformations like the coordinate-squaring transformation do 
not pass. 
 

 
Exercise 4.16: One 2D vector transformation is reflection across the x-axis. This transformation takes a vector and 
returns another one, which is the mirror image with respect to the x-axis. Its x-coordinate should be unchanged, and its 
y-coordinate should change its sign. Denoting this transformation Sx, here is an image of a vector v = (3, 2) and the 
transformed vector Sx(v). 
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A vector v = (3, 2) and its reflection over the x-axis (3, -2) 
Draw two vectors and their sum, as well as the reflection of these three vectors to demonstrate that this transformation 
preserves vector addition. Draw another diagram to show similarly that scalar multiplication is preserved, thereby 
demonstrating both criteria for linearity. 
Solution: Here’s an example of reflection over the x-axis that preserves a vector sum: 

 
For u + v = w as shown, reflection over the x-axis preserves the sum; that is, Sx(u) + Sx(v) = Sx(w). 
Here’s an example showing reflection preserving a scalar multiple: Sx(sv) lies where sSx(v) is expected to be. 

 
Reflection across the x-axis preserves this scalar multiple. 
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To prove that Sx is linear, you would need to show that you can draw analogous pictures for every vector sum and every 
scalar multiple. There are infinitely many of these, so it’s better to use an algebraic proof. (Can you figure out how to 
show these two facts algebraically?) 
 

 
Mini-project 4.17: Suppose S and T are both linear transformations. Explain why the composition of S and T is also 
linear. 
Solution: The composition S(T(v)) is linear if for any vector sum u + v = w, we have S(T(u)) + S(T(v)) = S(T(w)), and for any 
scalar multiple sv, we have S(T(sv)) = s · S(T(v)). This is only a statement of the definition that must be satisfied. 
Now let’s see why it’s true. Suppose first that u + v = w for any given input vectors u and v. Then by the linearity of T, we 
also know that T(u) + T(v) = T(w). Because this sum holds, the linearity of S tells us that the sum is preserved under S: 
S(T(u)) + S(T(v)) = S(T(w)). That means that S(T(v)) preserves vector sums. 
Similarly, for any scalar multiple sv, the linearity of T tells us that s · T(v) = T(sv). By linearity of S, s · S(T(v)) = S(T(sv)) as 
well. This means S(T(v)) preserves scalar multiplication and, therefore, that S(T(v)) satisfies the full definition of linearity 
as previously stated. We can conclude that the composition of two linear transformations is linear. 
 

 
Exercise 4.18: Let T be the linear transformation done by the Python function rotate_x_by(pi/2), what are T(e1), 
T(e2), and T(e3)? 
Solution: Any rotation about an axis leaves points on the axis unaffected, so because T(e1) is on the x-axis, T(e1) = e1 = 
(1, 0, 0). A counterclockwise rotation of e2 = (0, 1, 0) in the y,z plane takes this vector from the point one unit in the 
positive y direction to the point one unit in the positive z direction, so T(e2) = e3 = (0, 0, 1). Likewise, e3 is rotated 
counterclockwise from the positive z direction to the negative y direction. T(e3) still has length one in this direction, so it 
is -e2 or (0, -1, 0). 

 
A quarter-turn counterclockwise in the y,z plane sends e2 to e3 and e3 to -e2. 
 

 
Exercise 4.19: Write a linear_combination(scalars, *vectors) that takes a list of scalars and the same 
number of vectors, and returns a single vector. For example, linear_combination([1,2,3], (1,0,0), 
(0,1,0), (0,0,1)) should return 1 · (1, 0, 0) + 2 · (0, 1, 0) + 3 · (0, 0, 1) or (1, 2, 3). 
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Solution:  
from vectors import * 

def linear_combination(scalars,*vectors): 

    scaled = [scale(s,v) for s,v in zip(scalars,vectors)] 

    return add(*scaled) 
We can confirm this gives the expected result as previously described: 
>>> linear_combination([1,2,3], (1,0,0), (0,1,0), (0,0,1)) 

(1, 2, 3) 
 

 
Exercise 4.20: Write a function transform_standard_basis(transform) that takes a 3D vector transformation 
as an input and outputs the effect it has on the standard basis. It should output a tuple of 3 vectors that are the results 
of transform acting on e1, e2, and e3, respectively. 
Solution: As suggested, we just need to apply transform to each standard basis vector: 

def transform_standard_basis(transform): 

    return transform((1,0,0)), transform((0,1,0)), transform((0,0,1)) 
It confirms (within the floating-point error) our solution to a previous exercise, where we sought this output for 
rotate_x_by(pi/2): 

>>> from math import * 

>>> transform_standard_basis(rotate_x_by(pi/2)) 

((1, 0.0, 0.0), (0, 6.123233995736766e-17, 1.0), (0, -1.0, 1.2246467991473532e-16)) 

These vectors are approximately (1, 0, 0), (0, 0, 1), and (0, -1, 0). 
 

 
Exercise 4.21: Suppose B is a linear transformation, with B(e1) = (0, 0, 1), B(e2) = (2, 1, 0), B(e3) = (-1, 0, -1), and v = (-1, 
1, 2). What is B(v)? 
Solution: Because v = (-1, 1, 2) = -e1 + e2 + 2e3, B(v) = B(-e1 + e2 + 2e3). Because B is linear, it preserves this linear 
combination: B(v) = -B(e1) + B(e2) + 2 · B(e3). Now we have all the information we need: B(v) = -(0, 0, 1) + (2, 1, 0) + 2 · (-
1, 0, -1) = (0, 1, -3). 
 

 
Exercise 4.22: Suppose A and B are both linear transformations with A(e1) = (1, 1, 1), A(e2) = (1, 0, -1), and A(e3) = (0, 1, 
1), and B(e1) = (0, 0, 1), B(e2) = (2, 1, 0), and B(e3) = (-1, 0, -1). What is A(B(e1)), A(B(e2)), and A(B(e3))? 
Solution: A(B(e1)) is A applied to B(e1) = (0, 0, 1) = e3. We already know A(e3) = (0, 1, 1), so B(A(e1)) = (0, 1, 1). 
A(B(e2)) is A applied to B(e2) = (2, 1, 0). This is a linear combination of A(e1), A(e2), and A(e3) with scalars (2, 1, 0): 2 · (1, 
1, 1) + 1 · (1, 0, -1) + 0 · (0, 1, 1) = (3, 2, 1). 
Finally, A(B(e3)) is A applied to B(e3) = (-1, 0, -1). This is the linear combination -1 · (1, 1, 1) + 0 · (1, 0, -1) + -1 · (0, 1, 1) = 
(-1, -2, -2). 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

Note that now we know the result of the composition of A and B for all of the standard basis vectors, so we can 
calculate A(B(v)) for any vector v. 
 

Linear transformations are both well-behaved and easy-to-compute because these can be 
specified with so little data. We explore this more in the next chapter when we compute linear 
transformations with matrix notation. 

4.3 Summary 
• Vector transformations are functions that take vectors as inputs and return vectors as 

outputs. Vector transformations can operate on 2D or 3D vectors. 
• To effect a geometric transformation of the model, apply a vector transformation to every 

vertex of every polygon of a 3D model. 
• You can combine existing vector transformations by composition of functions to create 

new transformations, which are equivalent to applying the existing vector 
transformations sequentially. 

• Functional programming is a programming paradigm that emphasizes composing and, 
otherwise, manipulating functions.  

• The functional operation of currying turns a function that takes multiple arguments into 
a function that takes one argument and returns a new function. Currying lets you turn 
existing Python functions (like scale and add) into vector transformations. 

• Linear transformations are vector transformations that preserve vector sums and scalar 
multiples. In particular, points lying on a line segment still lie on a line segment after a 
linear transformation is applied.   

• A linear combination is the most general combination of scalar multiplication and vector 
addition. Every 3D vector is a linear combination of the 3D standard basis vectors, which 
are denoted e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). Likewise, every 2D vector 
is a linear combination of the 2D standard basis vectors, which are e1 = (1, 0) and e2 = 
(0, 1). 

• Once you know how a given linear transformation acts on the standard basis vectors, 
you can determine how it acts on any vector by writing the vector as a linear combination 
of the standard basis and using the fact that linear combinations are preserved.  

o In 3D, three vectors or nine total numbers specify a linear transformation.  

o In 2D, two vectors or four total numbers do the same.  

This last point is critical: linear transformations are both well-behaved and easy-to-
compute with because they can be specified with so little data. 
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Computing transformations with 

matrices 

This chapter covers 

• Writing a linear transformation as a matrix 
• Multiplying matrices to compose and apply linear transformations 
• Operating on vectors of different dimensions with linear transformations 
• Translating vectors in 2D or 3D with matrices 

In the culmination of chapter 4, I stated a big idea: any linear transformation in 3D can be 
specified by just three vectors or nine numbers total. By correctly selecting these nine numbers, 
we can achieve rotation by any angle about any axis, reflection across any plane, projection 
onto any plane, scaling by any factor in any direction, or any other 3D linear transformation. 

The transformation expressed as “a rotation counterclockwise by 90° about the z-axis” can 
equivalently be described by what it does to the standard basis vectors e1 = (1, 0, 0), e2 = (0, 
1, 0), and e3 = (0, 0, 1). Namely, the results are (0, 1, 0), (-1, 0, 0), and (0, 0, 1). Whether 
we think of this transformation geometrically or as described by these three vectors (or nine 
numbers), we’re thinking of the same imaginary machine (figure 5.1) that operates on 3D 
vectors. The implementations might be different, but the machines still produce 
indistinguishable results. 
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Figure 5.1: Two machines that do the same linear transformation. Geometric reasoning powers the machine on 
the top, while nine numbers power the one on the bottom. 

When arranged appropriately in a grid, the numbers that tell us how to execute a linear 
transformation are called a matrix. This chapter focuses on using these grids of numbers as 
computational tools, so there’s more number-crunching in this chapter than in the previous 
ones. Don’t let this intimidate you! When it comes down to it, we’re still just carrying out vector 
transformations.  

A matrix lets us compute a given linear transformation using the data of what that 
transformation does to standard basis vectors. All of the notation in this chapter serves to 
organize that process, which we covered in section 4.2, not to introduce any unfamiliar ideas. I 
know it can feel like a pain to learn a new and complicated notation, but I promise, it will pay 
off. We are better off being able to think of vectors as geometric objects or as tuples of numbers. 
Likewise, we’ll expand our mental model by thinking of linear transformations as matrices of 
numbers. 

5.1 Representing linear transformations with matrices 
Let’s return to a concrete example of the nine numbers that specify a 3D linear transformation. 
Suppose A is a linear transformation, and we know A(e1) = (1, 1, 1), A(e2) = (1, 0, -1), and 
A(e3) = (0, 1, 1). These three vectors having nine components in total contain all of the 
information required to specify the linear transformation A. 

Because we reuse this concept over and over, it warrants a special notation. We’ll adopt a new 
notation, called matrix notation, to work with these nine numbers as a representation of A. 

5.1.1 Writing vectors and linear transformations as matrices 

Matrices are rectangular grids of numbers, and their shapes tell us how to interpret them. For 
instance, we can interpret a matrix that is a single column of numbers as a vector with its entries 
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being the coordinates, ordered top to bottom. In this form, the vectors are called column 
vectors. For example, the standard basis for three dimensions can be written as three column 
vectors like this: 

 
For our purposes, this notation means the same thing as e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 
= (0, 0, 1). We can indicate how A transforms standard basis vectors with this notation as well: 

 
The matrix representing the linear transformation A is the 3-by-3 grid consisting of these vectors 
squashed together side by side: 

 
In 2D, a column vector consists of two entries, so 2 transformed vectors contain a total of 4 
entries. We can look at the linear transformation D that scales input vectors by a multiple of 2. 
First, we write how it works on basis vectors: 

 
Then the matrix for D is obtained by putting these columns next to each other: 
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Matrices can come in other shapes and sizes, but we’ll focus on these two shapes for now: the 
single column matrices representing vectors and the square matrices representing linear 
transformations. 

Remember, there are no new concepts here, only a new way of writing the core idea from section 
4.2: a linear transformation is defined by its results acting on the standard basis vectors. The 
way to get a matrix from a linear transformation is to find the vectors it produces from all of the 
standard basis vectors and combine the results side by side. Now, we’ll look at the opposite 
problem: how to evaluate a linear transformation given its matrix. 

5.1.2 Multiplying a matrix with a vector 

If a linear transformation B is represented as a matrix, and a vector v is also represented as a 
matrix (a column vector), we have all of the numbers required to evaluate B(v). For instance, 
if B and v are given by  

 
then the vectors B(e1), B(e2), and B(e3) can be read off of B as the columns of its matrix. From 
that point, we use the same procedure as before. Because v = 3e1 − 2e2 + 5e3, it follows that 
B(v) = 3B(e1) − 2 B(e2) + 5B(e3). Expanding this, we get 

 
and the result is the vector (1, -2, -2). Treating a square matrix as a function that operates on 
a column vector is a special case of an operation called matrix multiplication. Again, this has an 
impact on our notation and terminology, but we are simply doing the same thing: applying a 
linear transformation to a vector. Written as a matrix multiplication, it looks like this: 
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. 
As opposed to multiplying numbers, the order matters when you multiply matrices by vectors. 
In this case, Bv is a valid product but vB is not. Shortly, we’ll see how to multiply matrices of 
various shapes and a general rule for the order in which matrices can be multiplied. For now, 
take my word for it and think of this multiplication as valid because it means applying a 3D 
linear operator to a 3D vector.  

We can write Python code that multiplies a matrix by a vector. Let’s say we encode the matrix 
B as a tuple-of-tuples and the vector v as a tuple as usual: 

B = ( 
    (0,2,1), 
    (0,1,0), 
    (1,0,-1) 
) 
 
v = (3,-2,5) 

This is a bit different from how we originally thought about the matrix B. We originally created 
it by combining three columns, but here B is created as a sequence of rows. The advantage of 
defining a matrix in Python as a tuple of rows is that the numbers are laid out in the same order 
as we would write them on paper. We can, however, get the columns any time we want by using 
Python’s zip function (covered in appendix B): 

>>> list(zip(*B)) 
[(0, 0, 1), (2, 1, 0), (1, 0, -1)] 

The first entry of this list is (0, 0, 1), which is the first column of B, and so on. What we want is 
the linear combination of these vectors, where the scalars are the coordinates of v. To get this, 
we can use the linear_combination function from the exercise in section 4.2.5. The first 
argument to linear_combination should be v, which serves as the list of scalars, and the 
subsequent arguments should be the columns of B. Here’s the complete function: 

def multiply_matrix_vector(matrix, vector): 
    return linear_combination(vector, *zip(*matrix)) 

It confirms the calculation we did by hand with B and v: 

>>> multiply_matrix_vector(B,v) 
(1, -2, -2) 

There are two other mnemonic recipes for multiplying a matrix by a vector, both of which give 
the same results. To see these, let’s write a prototypical matrix multiplication: 
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The result of this calculation is the linear combination of the columns of the matrix with the 
coordinates x, y, and z as the scalars: 

 
This is an explicit formula for the product of a 3-by-3 matrix with a 3D vector. You can write a 
similar one for a 2D vector: 

 
The first mnemonic is that each coordinate of the output vector is a function of all the coordinates 
of the input vector. For instance, the first coordinate of the 3D output is a function f(x, y, z) = 
ax + by + cz. Moreover, this is a linear function (in the sense that you used the word in high 
school algebra); it is a sum of a number times each variable. We originally introduced the term 
“linear transformation” because linear transformations preserve lines. Another reason to use 
that term: a linear transformation is a collection of linear functions on the input coordinates that 
give the respective output coordinates. 

The second mnemonic presents the same formula differently: the coordinates of the output 
vector are dot products of the rows of the matrix with the target vector. For instance, the first 
row of the 3-by-3 matrix is (a, b, c) and the multiplied vector is (x, y, z), so the first coordinate 
of the output is (a, b, c) ∙ (x, y, z) = ax + by + cz. We can combine our two notations to state 
this fact in a formula: 

 
Equation 5.1 
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If your eyes are starting to glaze over from looking at so many letters and numbers in arrays, 
don’t worry. The notation can be overwhelming at first, and it takes some time to connect it to 
your intuition. There are more examples of matrices in this chapter, and the next chapter 
provides more review and practice as well. 

5.1.3 Composing linear transformations by matrix multiplication 

Some of the examples of linear transformations we’ve seen so far are rotations, reflections, 
rescalings, and other geometric transformations. What’s more, any number of linear 
transformations chained together give us a new linear transformation. In math terminology, the 
composition of any number of linear transformations is also a linear transformation. 

Because any linear transformation can be represented by a matrix, any two composed linear 
transformations can be as well. In fact, if you want to compose linear transformations to build 
new ones, matrices are the best tools for the job. 

NOTE: Let me take off my mathematician hat and put on my programmer hat for a moment. Suppose you 

want to compute the result of, say, 1,000 composed linear transformations operating on a vector. This can come 

up if you are animating an object by applying additional, small transformations within every frame of the 

animation. In Python, it would be computationally expensive to apply 1,000 sequential functions because there 

is computational overhead for every function call. However, if you were to find a matrix representing the 

composition of 1,000 linear transformations, you would boil the whole process down to a handful of numbers 

and a handful of computations. 

Let’s look at a composition of two linear transformations: A(B(v)), where the matrix 
representations of A and B are known to be the following: 

 
Here’s how the composition works step by step. First, the transformation B is applied to v, 
yielding a new vector B(v), or Bv if we’re writing it as a multiplication. Second, this vector 
becomes the input to the transformation A, yielding a final 3D vector as a result: A(Bv). Once 
again, we’ll drop the parentheses and write A(Bv) as the product ABv. Writing this product out 
for v = (x, y, z) gives us a formula that looks like this: 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
If we work right to left, we know how to evaluate this. Now I’m going to claim that we can work 
left to right as well and get the same result. Specifically, we can ascribe meaning to the product 
matrix AB on its own; it will be a new matrix (to be discovered) representing the composition of 
the linear transformations A and B: 

 
Now, what should the entries of this new matrix be? Its purpose is to represent the composition 
of the transformations A and B, which give us a new linear transformation, AB. As we saw, the 
columns of a matrix are the results of applying its transformation to standard basis vectors. The 
columns of the matrix AB are the result of applying the transformation AB to each of e1, e2, and 
e3. 

The columns of AB are, therefore, AB(e1), AB(e2) and AB(e3). Let’s look at the first column, for 
instance, which should be AB(e1) or A applied to the vector B(e1). In other words, to get the 
first column of AB, we multiply a matrix by a vector, an operation that we already practiced: 

 
Similarly, we find that AB(e2) = (3, 2, 1) and AB(e3) = (1, 0, 0), which are the second and third 
columns of AB: 

 
That’s how we do matrix multiplication. You can see there’s nothing to it besides carefully 
composing linear operators. Similarly, you can use mnemonics instead of reasoning through this 
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process each time. Because multiplying a 3-by-3 matrix by a column vector is the same as doing 
three dot products, multiplying two 3-by-3 matrices together is the same as doing nine dot 
products—all possible dot products of rows of the first matrix with columns of the second as 
shown in figure 5.2. 

 
Figure 5.2: Each entry of a product matrix is a dot product of a row of the first matrix with a column of the 
second matrix. 

Everything we’ve said about 3-by-3 matrix multiplication applies to 2-by-2 matrices as well. For 
instance, to find the product of these 2-by-2 matrices 

 
we can take the dot products of the rows of the first with the columns of the second. The dot 
product of the first row of the first matrix with the first column of the second matrix is (1,2) ∙ 
(0, 1) = 2. This tells us that the entry in the first row and first column of the result matrix is 2: 

 
Repeating this procedure, we can find all the entries of the product matrix: 
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You can do some matrix multiplication as an exercise to get the hang of it, but you’ll quickly 
prefer that your computer does the work for you. Let’s implement matrix multiplication in Python 
to make this possible. 

5.1.4 Implementing matrix multiplication 

There are a few ways we could write our matrix multiplication function, but I prefer using the 
dot product trick. Because the result of matrix multiplication should be a tuple of tuples, we can 
write it as a nested comprehension. It takes in two nested tuples as well, called a and b, 
representing our input matrices A and B. The input matrix a is already a tuple of rows of the 
first matrix, and we can pair these up with zip(*b), which is a tuple of columns of the second 
matrix. Finally, for each pair, we should take the dot product and yield it in the inner 
comprehension. Here’s the implementation: 

from vectors import * 
 
def matrix_multiply(a,b): 
    return tuple( 
        tuple(dot(row,col) for col in zip(*b)) 
        for row in a 
    ) 

The outer comprehension builds the rows of the result, and the inner one builds the entries of 
each row. Because the output rows are formed by the various dot products with rows of a, the 
outer comprehension iterates over a. 

Our matrix_multiply function doesn’t have any hard-coded dimensions. That means we can 
use it to do the matrix multiplications from the preceding 2D and 3D examples: 

>>> a = ((1,1,0),(1,0,1),(1,-1,1)) 
>>> b = ((0,2,1),(0,1,0),(1,0,-1)) 
>>> matrix_multiply(a,b) 
((0, 3, 1), (1, 2, 0), (1, 1, 0)) 
>>> c = ((1,2),(3,4)) 
>>> d = ((0,-1),(1,0)) 
>>> matrix_multiply(c,d) 
((2, -1), (4, -3)) 

Equipped with the computational tool of matrix multiplication, we can now do some easy 
manipulations of our 3D graphics. 

5.1.5 3D animation with matrix transformations 

To animate a 3D model, we redraw a transformed version of the original model in each frame. 
To make the model appear to move or change over time, we need to use different 
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transformations as time progresses. If these transformations are linear transformations 
specified by matrices, we need a new matrix for every new frame of the animation. 

Because PyGame’s built-in clock keeps track of time (in milliseconds), one thing we can do is to 
generate matrices whose entries depend on time. In other words, instead of thinking of every 
entry of a matrix as a number, we can think of it as a function that takes the current time, t, 
and returns a number (figure 5.3). 

 
Figure 5.3: Thinking of matrix entries as functions of time allows the overall matrix to change as time passes. 

For instance, we could use these nine expressions: 

 
As we covered in chapter 2, cosine and sine are both functions that take a number and return 
another number as a result. The other five entries happen to not change over time, but if you 
crave consistency, you can think of these as constant functions (as in f(t) = 1 in the center 
entry). Given any value of t, this matrix represents the same linear transformation as 
rotate_y_by(t). Time moves forward and the value of t increases, so if we apply this matrix 
transformation to each frame, we’ll get a bigger rotation each time. 

Let’s give our draw_model function (covered in appendix C and used extensively in chapter 4) a 
get_matrix keyword argument, where the value passed to get_matrix is a function that takes 
time in milliseconds and returns the transformation matrix that should be applied at that time. 
In the source code file, animate_teapot.py, I call it like this to animate the rotating teapot from 
chapter 4: 

from teapot import load_triangles 
from draw_model import draw_model 
from math import sin,cos 
 
def get_rotation_matrix(t): #1 
    seconds = t/1000 #2 
    return ( 
        (cos(seconds),0,-sin(seconds)), 
        (0,1,0), 
        (sin(seconds),0,cos(seconds)) 
    ) 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

draw_model(load_triangles(),  
           get_matrix=get_rotation_matrix) #3 

#1 Generates a new transformation matrix for any numeric input representing time 
#2 Converts the time to seconds so the transformation doesn’t happen too fast 
#3 Passes the function as a keyword argument to draw_model 

Now, draw_model is passed the data required to transform the underlying teapot model over 
time, but we need to use it in the function’s body. Before iterating over the teapot faces, we 
execute the appropriate matrix transformation: 

def draw_model(faces, color_map=blues, light=(1,2,3), 
               camera=Camera("default_camera",[]), 
               glRotatefArgs=None, 
               get_matrix=None): 
        #... #1 
        def do_matrix_transform(v): #2 
            if get_matrix:  #3 
               m = get_matrix(pygame.time.get_ticks()) 
               return multiply_matrix_vector(m, v) 
            else: 
               return v #4 
        transformed_faces = polygon_map(do_matrix_transform,  

                                        faces) #5 
        for face in transformed_faces: 
        #... #6 

#1 Most of the function body is unchanged, so we don’t print it here. 
#2 Creates a new function inside the main while loop that applies the matrix for this frame 
#3 Uses the elapsed milliseconds given by pygame.time.get_ticks() as well as the provided get_matrix function to 

compute a matrix for this frame 
#4 If no get_matrix is specified, doesn’t carry out any transformation and returns the vector unchanged 
#5 Applies the function to every polygon using polygon_map 
#6 The rest of the draw_model is the same as described in appendix C. 

With these changes, you can run the code and see the teapot rotate (figure 5.4). 

 
Figure 5.4: The teapot is transformed by a new matrix in every frame, depending on the elapsed time when the 
frame is drawn. 

Hopefully, I’ve convinced you with the preceding examples that matrices are entirely 
interchangeable with linear transformations. We’ve managed to transform and animate the 
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teapot the same way, using only nine numbers to specify each transformation. You can practice 
your matrix skills some more in the following exercises and then I’ll show you there’s even more 
to learn from the matrix_multiply function we’ve already implemented. 

5.1.6 Exercises 

 
Exercise 5.1: Write a function infer_matrix(n, transformation) that takes a dimension (like 2 or 3) and a 
function that is a vector transformation assumed to be linear. It should return an n-by-n square matrix (an n-tuple of n-
tuples of numbers, which is the matrix representing the linear transformation). Of course, the output is only meaningful 
if the input transformation is linear. Otherwise, it represents an entirely different function! 
Solution: 
def infer_matrix(n, transformation): 

    def standard_basis_vector(i): 

        return tuple(1 if i==j else 0 for j in range(1,n+1)) #1 

    standard_basis = [standard_basis_vector(i) for i in range(1,n+1)] #2 

    cols = [transformation(v) for v in standard_basis] #3 

    return tuple(zip(*cols)) #4 

#1 Creates the ith standard basis vector as a tuple containing a one in the ith coordinate and zeroes in all other 
coordinates 
#2 Creates the standard basis as a list of n vectors 
#3 Defines the columns of a matrix to be the result of applying the corresponding linear transformation to the 
standard basis vectors 
#4 Reshapes the matrix to be a tuple of rows instead of a list of columns, following our convention 
We can test this on a linear transformation like rotate_z_by(pi/2): 

>>> from transforms import rotate_z_by 

>>> from math import pi 

>>> infer_matrix(3,rotate_z_by(pi/2)) 

((6.123233995736766e-17, -1.0, 0.0), (1.0, 1.2246467991473532e-16, 0.0), (0, 0, 1)) 
 

 
Exercise 5.2: What is the result of the following product of a 2-by-2 matrix with a 2D vector? 

 
Solution: The dot product of the vector with the first row of the matrix is -2.5 * 1.3 + 0.3 * -0.7 = -3.46. The dot product 
of the vector with the second row of the matrix is -2.5 * 6.5 + 0.3 * 3.2 = -15.29. These are the coordinates of the 
output vector, so the result is: 
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Mini-project 5.3: Write a random_matrix function that generates matrices of a specified size with random whole 
number entries. Use the function to generate five pairs of 3-by-3 matrices. Multiply each of the pairs together by hand 
(for practice) and then check your work with the matrix_multiply function. 
Solution: First, we give the random_matrix function arguments to specify the number of rows, the number of 
columns, and the minimum and maximum values for entries: 
from random import randint 

def random_matrix(rows,cols,min=-2,max=2): 

    return tuple( 

        tuple( 

        randint(min,max) for j in range(0,cols)) 

        for i in range(0,rows) 

    ) 
Next, we can generate a random 3-by-3 matrix with entries between 0 and 10 as follows: 
>>> random_matrix(3,3,0,10) 

((3, 4, 9), (7, 10, 2), (0, 7, 4)) 
 

 
Exercise 5.4: For each of your pairs of matrices from the previous exercise, multiply them in the opposite order. Do you 
get the same result? 
Solution: Unless you get very lucky, your results will all be different. Most pairs of matrices give different results when 
multiplied in different orders. In math jargon, we say an operation is commutative if it gives the same result regardless 
of the order of inputs. For instance, multiplying numbers is a commutative operation because xy = yx for any choice of 
numbers x and y. However, matrix multiplication is not commutative because for two square matrices A and B, AB does 
not always equal BA. 
 

 
Exercise 5.5: In either 2D or 3D, there is a boring but important vector transformation called the identity transformation 
that takes in a vector and returns the same vector as output. This transformation is linear because it takes any input 
vector sum, scalar multiple, or linear combination and returns the same thing as output. What are the matrices 
representing the identity transformation in 2D and 3D, respectively? 
Solution: In 2D or 3D, the identity transformation acts on the standard basis vectors and leaves them unchanged. 
Therefore, in either dimension, the matrix for this transformation has the standard basis vectors as its columns. In 2D 
and 3D, these identity matrices are denoted by I2 and I3, respectively, and look like this: 
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Exercise 5.6: Apply the matrix ((2,1,1),(1,2,1),(1,1,2)) to all the vectors defining the teapot. What happens 
to the teapot and why? 
Solution: The following function is included in the source file matrix_transform_teapot.py: 
def transform(v): 

    m = ((2,1,1),(1,2,1),(1,1,2)) 

    return multiply_matrix_vector(m,v) 

 

draw_model(polygon_map(transform, load_triangles())) 
Running the code, we see that the front of the teapot is stretched out into the region where x, y, and z are all positive. 

 
Applying the given matrix to all vertices of the teapot 
This is because all of the standard basis vectors are transformed to vectors with positive coordinates: (2, 1, 1), (1, 2, 1), 
and (1, 1, 2), respectively. 

 
How the linear transformation defined by this matrix affects the standard basis vectors. 
A linear combination of these new vectors with positive scalars is stretched further in the +x, +y, and +z directions than 
the same linear combination of the standard basis. 
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Exercise 5.7: Implement multiply_matrix_vector in a different way by using two nested comprehensions: one 
traversing the rows of the matrix and one traversing the entries of each row. 
Solution: 
def multiply_matrix_vector(matrix,vector): 

    return tuple( 

        sum(vector_entry * matrix_entry 

            for vector_entry, matrix_entry in zip(row,vector)) 

        for row in matrix 

    ) 
 

 
Exercise 5.8: Implement multiply_matrix_vector yet another way using the fact that the output coordinates are 
the dot products of the input matrix rows with the input vector. 
Solution: This is a simplified version of the previous exercise solution: 
def multiply_matrix_vector(matrix,vector): 

    return tuple( 

        dot(row,vector) 

        for row in matrix 

    ) 

 

 
Mini-project 5.9: I first told you what a linear transformation was and then showed you that any linear transformation 
can be represented by a matrix. Let’s prove the converse fact now: all matrices represent linear transformations. 
Starting with the explicit formulas for multiplying a 2D vector by a 2-by-2 matrix or multiplying a 3D vector by a 3-by-3 
matrix, prove that algebraically. That is, show that matrix multiplication preserves sums and scalar multiples. 
Solution: I’ll show the proof for 2D; the 3D proof has the same structure but with a bit more writing. Suppose we have a 
2-by-2 matrix called A with any four numbers a, b, c, and d as its entries. Let’s see how A operates on two vectors u and 
v: 

 
You can do the matrix multiplications explicitly to find Au and Av: 
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And then we can compute Au + Av and A(u + v) and see that the results match: 

 
This tells us that the 2D vector transformation defined by multiplying any 2-by-2 matrix preserves vector sums. 
Likewise, for any number s, we have 

 
So s ∙ (Av) and A(sv) give the same results, and we see that multiplying by the matrix A preserves scalar multiples as 
well. These two facts mean that multiplying by any 2-by-2 matrix is a linear transformation of 2D vectors. 
 

 
Exercise 5.10: Once again, let’s use the two matrices from section 5.1.3: 

 
Write a function compose_a_b that executes the composition of the linear transformation for A and the linear 
transformation for B. Then use the infer_matrix function from a previous exercise in this section to show that 
infer_matrix(3, compose_a_b) is the same as the matrix product AB. 
Solution: First, we implement two functions transform_a and transform_b that do the linear transformations 
defined by the matrices A and B. Then, we combine these using our compose function: 
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from transforms import compose 

 

a = ((1,1,0),(1,0,1),(1,-1,1)) 

b = ((0,2,1),(0,1,0),(1,0,-1)) 

 

def transform_a(v): 

    return multiply_matrix_vector(a,v) 

 

def transform_b(v): 

    return multiply_matrix_vector(b,v) 

 

compose_a_b = compose(transform_a, transform_b) 

Now we can use our infer_matrix function to find the matrix corresponding to this composition of linear 
transformations and compare it to the matrix product AB: 
>>> infer_matrix(3, compose_a_b) 

((0, 3, 1), (1, 2, 0), (1, 1, 0)) 

>>> matrix_multiply(a,b) 

((0, 3, 1), (1, 2, 0), (1, 1, 0)) 

 

 
Mini-project 5.11: Find two, 2-by-2 matrices, neither of which is the identity matrix I2, but whose product is the identity 
matrix. 
Solution: One way to do this is to write two matrices and play with their entries until you get the identity matrix as a 
product. Another way is to think of the problem in terms of linear transformations. If two matrices multiplied together 
produce the identity matrix, then the composition of their corresponding linear transformations should produce the 
identity transformation. 
With that in mind, what are two 2D linear transformations whose composition is the identity transformation? When 
applied in sequence to a given 2D vector, these linear transformations should return the original vector as output. One 
such pair of transformations is rotation by 90° clockwise, then rotation by 270° clockwise. Applying both of these 
executes a 360° rotation that brings any vector back to its original position. The matrices for a 270° rotation and a 
90° rotation are as follows, and their product is the identity matrix: 

 
 

 
Exercise 5.12: We can multiply a square matrix by itself any number of times. We can then think of successive matrix 
multiplications as “raising a matrix to a power.” For a square matrix A, A * A can be written A2; A * A * A can be written 
A3; and so on. Write a matrix_power(power,matrix) function that raises a matrix to the specified (whole 
number) power. 
Solution: Here is an implementation that works for whole number powers greater than or equal to 1: 
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def matrix_power(power,matrix): 

    result = matrix 

    for _ in range(1,power): 

        result = matrix_multiply(result,matrix) 

    return result 

 

5.2 Interpreting matrices of different shapes 
The matrix_multiply function doesn’t hard-code the size of the input matrices, so we can use 
it to multiply either 2-by-2 or 3-by-3 matrices together. As it turns out, it can also handle 
matrices of other sizes as well. For instance, it can handle these two 5-by-5 matrices: 

>>> a = ((-1, 0, -1, -2, -2), (0, 0, 2, -2, 1), (-2, -1, -2, 0, 1), (0, 2, -2, -1, 
0), (1, 1, -1, -1, 0)) 
>>> b = ((-1, 0, -1, -2, -2), (0, 0, 2, -2, 1), (-2, -1, -2, 0, 1), (0, 2, -2, 
-1, 0), (1, 1, -1, -1, 0)) 
>>> matrix_multiply(a,b) 
((-10, -1, 2, -7, 4), (-2, 5, 5, 4, -6), (-1, 1, -4, 2, -2), (-4, -5, -5, -9, 
4), (-1, -2, -2, -6, 4)) 

There’s no reason we shouldn’t take this result seriously—our functions for vector addition, 
scalar multiplication, dot products, and, therefore, matrix multiplication don’t depend on the 
dimension of the vectors we use. Even though we can’t picture a 5D vector, we can do all the 
same algebra on five tuples of numbers that we did on pairs and triples of numbers in 2D and 
3D, respectively. In this 5D product, the entries of the resulting matrix are still dot products of 
rows of the first matrix with columns of the second (figure 5.5): 

 
Figure 5.5: The dot product of a row of the first matrix with a column of the second matrix produces one entry of 
the matrix product. 

You can’t visualize it in the same way, but you can show algebraically that a 5-by-5 matrix 
specifies a linear transformation of 5D vectors. We spend time talking about what kind of objects 
live in four, five, or more dimensions in the next chapter. 
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5.2.1 Column vectors as matrices 

Let’s return to the example of multiplying a matrix by a column vector. I already showed you 
how to do a multiplication like this, but we treated it as its own case with the 
multiply_matrix_vector function. It turns out matrix_multiply is capable of doing these 
products as well, but we have to write the column vector as a matrix. As an example, let’s pass 
the following square matrix and single-column matrix to our matrix_multiply function: 

 
I claimed before that you can think of a vector and a single-column matrix interchangeably, so 
we might encode d as a vector (1,1,1). But this time, let’s force ourselves to think of it as a 
matrix, having three rows with one entry each. Note that we have to write (1,) instead of (1) to 
make Python think of it as a 1-tuple instead of as a number. 

>>> c = ((-1, -1, 0), (-2, 1, 2), (1, 0, -1)) 
>>> d = ((1,),(1,),(1,)) 
>>> matrix_multiply(c,d) 
((-2,), (1,), (0,)) 

The result has three rows with one entry each, so it is a single-column matrix as well. Here’s 
what this product looks like in matrix notation: 

 
Our multiply_matrix_vector function can evaluate the same product but in a different format: 

>>> multiply_matrix_vector(c,(1,1,1)) 
(-2, 1, 0) 

This demonstrates that multiplying a matrix and a column vector is a special case of matrix 
multiplication. We don’t need a separate function multiply_matrix_vector after all. We can 
further see that the entries of the output are dot products of the rows of the first matrix with 
the single column of the second (figure 5.6). 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 5.6: An entry of the resulting vector computed as a dot product. 

On paper, you’ll see vectors represented interchangeably as tuples (with commas) or as column 
vectors. But for the Python functions we’ve written, the distinction is critical. The tuple (-2, 1, 
0) can’t be used interchangeably with the tuple-of-tuples ((-2,), (1,), (0,)). Yet another way of 
writing the same vector would be as a row vector, or a matrix with one row. Here are the three 
notations for comparison: 

Table 5.1 Comparison of mathematical notations for vectors with corresponding Python 
representations 

Representation In math notation In Python 

Ordered triple (ordered tuple) 

 

v = (-2,1,0) 

Column vector 

 

v = ((-2,),(1,),(0,)) 

Row vector 

 

v = ((-2,1,0),) 

If you’ve seen this comparison in math class, you may have thought it was a pedantic notational 
distinction. Once we represent these in Python, however, we see that they are really three 
distinct objects that need to be treated differently. While these all represent the same geometric 
data, which is a 3D arrow or point in space, only one of these, the column vector, can be 
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multiplied by a 3-by-3 matrix. The row vector doesn’t work because, as shown in figure 5.7, we 
can’t take the dot product of a row of the first matrix with a column of the second. 

 
Figure 5.7: Two matrices that cannot be multiplied together. 

For our definition of matrix multiplication to be consistent, we can only multiply a matrix on the 
left of a column vector. This prompts the general question posed by the next section. 

5.2.2 What pairs of matrices can be multiplied? 

We can make grids of numbers of any dimension. When can our matrix multiplication formula 
work, and what does it mean when it does? 

The answer is that the number of columns of the first matrix has to match the number of rows 
of the second. This is clear when we do the matrix multiplication in terms of dot products. For 
instance, we can multiply any matrix with three columns by a second matrix with three rows. 
This means that rows of the first matrix and columns of the second each have three entries, so 
we can take their dot products. Figure 5.8 shows the dot product of the first row of the first 
matrix with the first column of the second matrix gives us an entry of the product matrix.  

 
Figure 5.8: Finding the first entry of the product matrix 

We can complete this matrix product by taking the remaining seven dot products. Figure 5.9 
shows another entry, computed from a dot product. 
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Figure 5.9: Finding another entry of the product matrix 

This constraint also makes sense in terms of our original definition of matrix multiplication: the 
columns of the output are each linear combinations of the columns of the first matrix with scalars 
given by a row of the second matrix (figure 5.10). 

 
Figure 5.10: Each column of the result is a linear combination of the columns of the first matrix. 

I was calling the previous square matrices 2-by-2 and 3-by-3 matrices. The last example (figure 
5.10) was the product of a 2-by-3 and a 3-by-4 matrix. When we describe the dimensions of a 
matrix like this, we say the number of rows first and then the number of columns. For instance, 
a 3D column vector would be a 3-by-1 matrix.  

NOTE: Sometimes you’ll see matrix dimensions written with a multiplication sign as in a 3x3 matrix or a 3x1 

matrix.  

In this language, we can make a general statement about the shapes of matrices that can be 
multiplied: you can only multiply an n-by-m matrix by a p-by-q matrix if m = p. When that is 
true, the resulting matrix will be a n-by-q matrix. For instance, a 17x9 matrix cannot be 
multiplied by a 6x11 matrix. However, a 5x8 matrix can be multiplied by an 8x10 matrix. Figure 
5.11 shows the result of the latter, which is a 5x10 matrix. 
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Figure 5.11: Each of the five rows of the first matrix can be paired with one of the ten columns of the second 
matrix to produce one of the 5 x 10 = 50 entries of the product matrix. I used stars instead of numbers to show 
you that any matrices of these sizes are compatible. 

By contrast, you couldn’t multiply these matrices in the opposite order: a 10x8 matrix can’t be 
multiplied by a 5x8 matrix. Now it’s clear how to multiply bigger matrices, but what do the 
results mean? It turns out we can learn something from the result: all matrices represent vector 
functions, and all valid matrix products can be interpreted as composition of these functions. 
Let’s see how this works. 

5.2.3 Viewing square and non-square matrices as vector functions 

We can think of a 2x2 matrix as the data required to do a given linear transformation of a 2D 
vector. Pictured as a machine in figure 5.12, this transformation takes a 2D vector into its input 
slot and produces a 2D vector out of its output slot as a result. 

 
Figure 5.12: Visualizing a matrix as a machine that takes vectors as inputs and produces vectors as outputs 

Under the hood, our machine does this matrix multiplication: 

 
It’s fair to think of matrices as machines that take vectors as inputs and produce vectors as 
outputs. Figure 5.13, however, shows a matrix can’t take just any vector as input: it is a 2x2 
matrix so it does a linear transformation of 2D vectors. Correspondingly, this matrix can only 
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be multiplied by a column vector with two entries. Let’s split up the machine’s input and output 
slots to suggest that these take and produce 2D vectors or pairs of numbers. 

 
Figure 5.13: Refining our mental model by redrawing the machine’s input and output slots to indicate that its 
inputs and outputs are pairs of numbers 

Likewise, a linear transformation machine (figure 5.14) powered by a 3x3 matrix can only take 
in 3D vectors and produce 3D vectors as a result. 

 
Figure 5.14: A linear transformation machine powered by a 3x3 matrix takes in 3D vectors and outputs 3D 
vectors. 

Now we can ask ourselves, what would a machine look like if it were powered by a non-square 
matrix? Perhaps the matrix would look something like this: 

 
As a specific example, what kinds of vectors could this 2x3 matrix act on? If we’re going to 
multiply this matrix with a column vector, the column vector must have three entries to match 
the size of the rows of this matrix. Multiplying our 2x3 matrix by a 3x1 column vector gives us 
a 2x1 matrix as a result, or a 2D column vector. For example, 
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This tells us that this 2x3 matrix represents a function taking 3D vectors to 2D vectors. If we 
were to draw it as a machine, like in figure 5.15, it would accept 3D vectors in its input slot and 
produce 2D vectors from its output slot. 

 
Figure 5.15: A machine that takes in 3D vectors and outputs 2D vectors, powered by a 2x3 matrix 

In general, an m-by-n matrix defines a function taking n-dimensional vectors as inputs and 
returning m-dimensional vectors as outputs. Any such function is linear in the sense that it 
preserves vector sums and scalar multiples. It’s not a transformation because it doesn’t just 
modify input, it returns an entirely different kind of output: a vector living in a different number 
of dimensions. For this reason, we’ll use a more general terminology; we’ll call it a linear function 
or a linear map. Let’s consider an in-depth example of a familiar linear map from 3D to 2D. 

5.2.4 Projection as a linear map from 3D to 2D 

We already saw a vector function that accepts 3D vectors and produces 2D vectors: a projection 
of a 3D vector onto the x, y plane (section 3.5.2). This transformation (we can call it P) takes 
vectors of the form (x, y, z) and returns these with their z component deleted: (x, y). I’ll spend 
some time carefully showing why this is a linear map and how it preserves vector addition and 
scalar multiplication. 

First of all, let’s write P as a matrix. To accept 3D vectors and return 2D vectors, it should be a 
2x3 matrix. Let’s follow our trusty formula for finding a matrix by testing the action of P on 
standard basis vectors. Remember, in 3D the standard basis vectors are defined as e1 = (1, 0, 
0), e2 = (0, 1, 0), and e3 = (0, 0, 1), and when we apply the projection to these three vectors, 
we get (1, 0), (0, 1), and (0, 0), respectively. We can write these as column vectors 
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and then stick them together side by side to get a matrix: 

 
To check this, let’s multiply it by a test vector (a, b, c). The dot product of (a, b, c) with (1, 0, 
0) is a, so that’s the first entry of the result. The second entry is the dot product of (a, b, c) 
with (0, 1, 0), or b. You can picture this matrix as grabbing a and b from (a, b, c) and ignoring 
c (figure 5.16). 

 
Figure 5.16: Only 1 * a contributes to the first entry of the product, and only 1 * b contributes to the second 
entry. The other entries are zeroed out (in gray in the figure). 

This matrix does what we want: it deletes the third coordinate of a 3D vector, leaving us with 
only the first two coordinates. It’s good news that we can write this projection as a matrix, but 
let’s also give an algebraic proof that this is a linear map. To do this, we have to show that the 
two key conditions of linearity are satisfied. 

PROVING PROJECTION PRESERVES VECTOR SUMS 

If P is linear, any vector sum u + v = w should be respected by P. That is, P(u) + P(v) should 
equal P(w) as well. Let’s confirm this using these equations: u = (u1, u2, u3) and v = (v1, v2, 
v3). Then w = u + v so that 

w = (u1 + v1, u2 + v2, u3 + v3) 
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Executing P on all of these vectors is simple because we only need to remove the third 
coordinate:  

P(u) = (u1, u2) 

P(v) = (v1, v2)  

so 

P(w) = (u1 + v1, u2 + v2) 

Adding P(u) and P(v), we get (u1 + v1, u2 + v2), which is the same as P(w). For any three 3D 
vectors u + v = w, we, therefore, also have P(u) + P(v) = P(w). This validates our first 
condition. 

PROVING PROJECTION PRESERVES SCALAR MULTIPLES 

The second thing we need to show is that P preserves scalar multiples. Letting s stand for any 
real number and letting u = (u1, u2, u3), we want to demonstrate that P(su) is the same as 
sP(u).  

Deleting the third coordinate and doing the scalar multiplication give the same result regardless 
of which order these operations are carried out. The result of su is (su1, su2, su3), so P(su) = 
(su1, su2). The result of P(u) is (u1, u2), so sP(u) = (su1, su2). This validates the second condition 
and confirms that P satisfies the definition of linearity. 

These kinds of proofs are usually easier to do than to follow, so I’ve given you another one as 
an exercise. In the exercise, you can check that a function from 2D to 3D, specified by a given 
matrix, is linear using the same approach. 

More illustrative than an algebraic proof is an example. What does it look like when we project 
a 3D vector sum down to 2D? We can see it in three steps. First, we can draw a vector sum of 
two vectors u and v in 3D as shown in figure 5.17. 
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Figure 5.17: A vector sum of two arbitrary vectors u and v in 3D 

Then, we can trace a line from each vector to the x,y plane to show where these vectors end up 
after projection (figure 5.18). 

 
Figure 5.18: Visualizing where u, v, and u + v end up after projection to the x,y plane 

Finally, we can look at these new vectors and see that they still constitute a vector sum (figure 
5.19). 
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Figure 5.19: The projected vectors form a sum: P(v) + P(v) = P(u + v). 

In other words, if three vectors u, v, and w form a vector sum u + v = w, then their “shadows” 
in the x,y plane also form a vector sum. Now that you’ve got some insight into linear 
transformation from 3D to 2D and a matrix that represents it, let’s return to our discussion of 
linear maps in general. 

5.2.5 Composing linear maps 

The beauty of matrices is that they store all of the data required to evaluate a linear function 
on a given vector. What’s more, the dimensions of a matrix tell us the dimensions of input 
vectors and output vectors for the underlying function. We captured that visually in figure 5.20 
by drawing machines for matrices of varying dimensions, whose input and output slots have 
different shapes. Here are four examples we’ve seen, labeled with letters so we can refer back 
to them. 

 
Figure 5.20: Four linear functions represented as machines with input and output slots. The shape of a slot tells 
us what dimension of vector it accepts or produces. 

Drawn like this, it’s easy to pick out which pairs of linear function machines could be welded 
together to build a new one. For instance, the output slot of M has the same shape as the input 
slot of P, so we could make the composition P(M(v)) for a 3D vector v. The output of M is a 3D 
vector that can be passed right along into the input slot of P (figure 5.21). 
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Figure 5.21: The composition of P and M. A vector is passed into the input slot of M, the output M(v) passes 
invisibly through the plumbing and into P, and the output P(M(v)) emerges from the other end. 

By contrast, figure 5.22 shows that we can’t compose N and M because N doesn’t have enough 
output slots to fill every input of M. 

 
Figure 5.22: The composition of N and M is not possible because outputs of N are 2D vectors, while inputs to M 
are 3D vectors. 

I’m making this idea visual now by talking about slots, but hidden underneath is the same 
reasoning we use to decide if two matrices can be multiplied together. The count of the columns 
of the first matrix has to match the count of rows of the second. When the dimensions match in 
this way, so do the slots, and we can compose the linear functions and multiply their matrices. 

Thinking of P and M as matrices, the composition of P and M is written PM as a matrix product. 
(Remember, if PM acts on a vector v as PMv, M is applied first and then P.) When v = (1, 1, 1), 
the product PMv is a product of two matrices and a column vector, and it can be simplified into 
a single matrix times a column vector if we evaluate PM (figure 5.23). 
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Figure 5.23: Applying M and then P is equivalent to applying the composition PM. We consolidate the 
composition into a single matrix by doing the matrix multiplication. 

As a programmer, you’re used to thinking of functions in terms of the types of data they 
consume and produce. I’ve given you a lot of notation and terminology to digest thus far in this 
chapter, but as long as you grasp this core concept, you’ll get the hang of it eventually. 

I strongly encourage you to work through the following exercises to make sure you understand 
the language of matrices. For the rest of this chapter and the next, there won’t be many big 
new concepts, only applications of what we’ve seen so far. These applications will give you even 
more practice with matrix and vector computations. 

5.2.6 Exercises 

 
Exercise 5.13: What are the dimensions of this matrix?  

 
a. 5x3  
b. 3x5 
Solution: This is a 3x5 matrix because it has three rows and five columns. 
 

 
Exercise 5.14: What are the dimensions of a 2D column vector considered as a matrix? What about a 2D row vector? A 
3D column vector? A 3D row vector? 
Solution: A 2D column vector has two rows and one column, so it is a 2x1 matrix. A 2D row vector has one row with two 
columns, so it is a 1x2 matrix. Likewise, a 3D column and row vector have the dimensions 3x1 and 1x3 as matrices, 
respectively. 
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Mini-project 5.15: Many of our vector and matrix operations make use of the Python zip function. When given input 
lists of different sizes, this function truncates the longer of the two rather than failing. This means that when we pass 
invalid inputs, we get meaningless results back. For instance, there is no such thing as a dot product between a 2D 
vector and a 3D vector, but our dot function returns something anyway: 

>>> from vectors import dot 

>>> dot((1,1),(1,1,1)) 

2 
Add safeguards to all of the vector arithmetic functions so that they throw exceptions rather than returning values for 
vectors of invalid sizes. Once you’ve done that, show that matrix_multiply no longer accepts a product of a 3x2 
and a 4x5 matrix. 
 

 
Exercise 5.16: Which of the following are valid matrix products? For those that are valid, what dimension is the product 
matrix? 

A.  

B.  

C.  

D.  
Solution: 
A. This product of a 2x2 matrix and a 4x4 matrix is not valid; the first matrix has two columns but the second matrix has 
four rows. 
B. This product of a 2x4 matrix and a 4x2 matrix is valid; the four columns of the first matrix match the four rows of the 
second matrix. The result is a 2x2 matrix. 
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C. This product of a 3x1 matrix and a 1x8 matrix is valid; the single column of the first matrix matches the single row of 
the second. The result is a 3x8 matrix. 
D. This product of a 3x3 matrix and a 2x3 matrix is not valid; the three columns of the first matrix do not match the two 
rows of the second. 
 

 
Exercise 5.17: A matrix with 15 total entries is multiplied by a matrix with 6 total entries. What are the dimensions of 
the two matrices, and what is the dimension of the product matrix? 
Solution: Let’s call the dimensions of the matrices m-by-n and n-by-k because the number of columns of the first matrix 
has to match the number of rows of the second. Then mn = 15 and nk = 6. There are actually two possibilities: 

• The first possibility is that m = 5, n = 3, and k = 2. Then this would be a 5x3 matrix multiplied by a 3x2 matrix 
resulting in a 5x2 matrix. 

• The second possibility is that m = 15, n = 1, and k = 6. Then this would be a 15x1 matrix times a 1x6 matrix, 
resulting in a 15x6 matrix. 

 

 
Exercise 5.18: Write a function that turns a column vector into a row vector, or vice versa. Flipping a matrix on its side 
like this is called transposition and the resulting matrix is called the transpose of the original. 
Solution: 
def transpose(matrix): 

    return tuple(zip(*matrix)) 

The call to zip(*matrix) returns a list of columns of the matrix and then we tuple them. This has the effect of 
swapping rows and columns of any input matrix, specifically turning column vectors into row vectors and vice versa: 
>>> transpose(((1,),(2,),(3,))) 

((1, 2, 3),) 

>>> transpose(((1, 2, 3),)) 

((1,), (2,), (3,)) 

 

 
Exercise 5.19: Draw a picture that shows that a 10x8 and a 5x8 matrix can’t be multiplied in that order. 
Solution: 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
The rows of the first matrix have ten entries but the columns of the second have five, meaning we can’t evaluate this 
matrix product. 
 

 
Exercise 5.20: We want to multiply three matrices together: A is 5x7, B is 2x3, and C is 3x5. What order can they be 
multiplied in and what is the size of the result? 
Solution: One valid product is BC, a 2x3 times a 3x5 matrix yielding a 2x5 matrix. Another is CA, a 3x5 matrix times a 
5x7 matrix yielding a 3x7 matrix. The product of three matrices, BCA, is valid regardless of the order you use. (BC)A is a 
2x5 matrix times a 5x7 matrix, while B(CA) is a 2x3 matrix times a 3x7 matrix. Each yields the same 2x7 matrix as a 
result. 

 
Multiplying three matrices in different orders 
 

 
Exercise 5.21: Projection onto the y,z plane and onto the x,z plane are also linear maps from 3D to 2D. What are their 
matrices? 
Solution: Projection onto the y,z plane deletes the x-coordinate. The matrix for this operation is 

 
Likewise, projection onto the x,z plane deletes the y-coordinate: 
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For example, 

 
 

 
Exercise 5.22: Show by example that the infer_matrix function from a previous exercise can create matrices for 
linear functions whose inputs and outputs have different dimensions. 
Solution: One function we could test would be projection onto the x,y plane, which takes in 3D vectors and returns 2D 
vectors. We can implement this linear transformation as a Python function and then infer its 2x3 matrix: 
>>> def project_xy(v): 

...     x,y,z = v 

...     return (x,y) 

... 

>>> infer_matrix(3,project_xy) 

((1, 0, 0), (0, 1, 0)) 

Note that we had to supply the dimension of input vectors as an argument, so that we can build the correct standard 
basis vectors to test under the action of project_xy. Once project_xy is passed the 3D standard basis vectors, it 
automatically outputs 2D vectors to supply the columns of the matrix. 
 

 
Exercise 5.23: Write a 4x5 matrix that acts on a 5D vector by deleting the third of its five entries, thereby producing a 
4D vector. For instance, multiplying it with the column vector form of (1, 2, 3, 4, 5) should return (1, 2, 4, 5). 
Solution: The matrix is 

  
You can see that the first, second, fourth, and fifth coordinates of an input vector form the four coordinates of the 
output vector: 
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The 1’s in the matrix indicate where coordinates of the input vector end up in the output vector. 
 

 
Mini-project 5.24: Consider the vector of six variables (l, e, m, o, n, s). Find the matrix for the linear transformation that 
acts on this vector to produce the vector (s, o, l, e, m, n) as a result. 
Hint: The third coordinate of the output equals the first coordinate of the input, so the transformation must send the 
standard basis vector (1, 0, 0, 0, 0, 0) to (0, 0, 1, 0, 0, 0). 
Solution:  

 
This matrix reorders the entries of a 6D vector in the specified way. 
 

 
Exercise 5.25: What valid products can be made from the matrices M, N, P, and Q from section 5.2.5? Include in your 
consideration the products of matrices with themselves. For those products that are valid, what are the dimensions of 
the matrix products? 
Solution: M is 3x3, N is 2x2, and P and Q are both 2x3. The product of M with itself, MM = M2 is valid and a 3x3 matrix, 
so is NN = N2 which is a 2x2 matrix. Apart from that, PM, QM, NP, and NQ are all 3x2 matrices. 
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5.3 Translating vectors with matrices 
One advantage of matrices is that computations look the same in any number of dimensions. 
We don’t need to worry about picturing the configurations of vectors in 2D or 3D; we can simply 
plug them into the formulas for matrix multiplication or use them as inputs to our Python 
matrix_multiply. This is especially useful when we want to do computations in more than three 
dimensions.  

The human brain isn’t wired to picture vectors in four or five dimensions, let alone 100, but we 
already saw we can do computations with vectors in higher dimensions. In this section, we’ll 
cover a computation that requires doing computation in higher dimensions: translating vectors 
using a matrix. 

5.3.1 Making plane translations linear 

In the last chapter, we showed that translations are not linear transformations. When we move 
every point in the plane by a given vector, the origin moves and vector sums are not preserved. 
How can we hope to execute a 2D transformation with a matrix if it is not a linear 
transformation? 

The trick is that we can think of our 2D points to translate as living in 3D. Let’s return to our 
dinosaur from chapter 2. The dinosaur was composed of 21 points, and we could connect these 
in order to create the outline of the figure: 

from vector_drawing import * 
 
dino_vectors = [(6,4), (3,1), (1,2), (-1,5), (-2,5), (-3,4), (-4,4), 
    (-5,3), (-5,2), (-2,2), (-5,1), (-4,0), (-2,1), (-1,0), (0,-3), 
    (-1,-4), (1,-4), (2,-3), (1,-2), (3,-1), (5,1) 
] 
 
draw( 
    Points(*dino_vectors), 
    Polygon(*dino_vectors) 
) 

The result is the familiar 2D dinosaur (figure 5.24). 
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Figure 5.24: The familiar 2D dinosaur from chapter 2 

If we want to translate the dinosaur to the right by 3 units and up by 1 unit, we could simply 
add the vector (3, 1) to each of the dinosaur’s vertices. But this isn’t a linear map, so we can’t 
produce a 2x2 matrix that does this translation. If we think of the dinosaur as an inhabitant of 
3D space instead of the 2D plane, it turns out we can formulate the translation as a matrix. 

Bear with me for a moment while I show you the trick; I’ll explain how it works shortly. Let’s 
give every point of the dinosaur a z-coordinate of 1. Then we can draw it in 3D by connecting 
each of the points with segments and see that the resulting polygon lies on the plane where z 
= 1 (figure 5.25). I’ve created a helper function called polygon_segments_3d to get the 
segments of the dinosaur polygon in 3D. 

from draw3d import * 
 
def polygon_segments_3d(points,color='blue'): 
    count = len(points) 
    return [Segment3D(points[i], points[(i+1) % count],color=color) for i in 

range(0,count)] 
 
dino_3d = [(x,y,1) for x,y in dino_vectors] 
 
draw3d( 
    Points3D(*dino_3d, color='blue'), 
    *polygon_segments_3d(dino_3d) 
) 
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Figure 5.25: The same dinosaur with each of its vertices given a z-coordinate of 1 

Figure 5.26 shows a matrix that “skews” 3D space, so that the origin stays put, but the plane 
where z = 1 is translated as desired. Trust me for now! I’ve highlighted the numbers relating to 
the translation that you should pay attention to. 

 
Figure 5.26: A magic matrix that moves the plane z = 1 by +3 in the x direction and by +1 in the y direction 

We can apply this matrix to each vertex of the dinosaur and then voila! The dinosaur is translated 
by (3, 1) in its plane (figure 5.27). 
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Figure 5.27: Applying the matrix to every point keeps the dinosaur in the same plane, but translates it within the 
plane by (3, 1). 

Here’s the code: 

magic_matrix = ( 
    (1,0,3), 
    (0,1,1), 
    (0,0,1)) 
 
translated = [multiply_matrix_vector(magic_matrix, v) for v in 
dino_vectors_3d] 

For clarity, we could then delete the z-coordinates again and show the translated dinosaur in 
the plane with the original one (figure 5.28). 
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Figure 5.28: Dropping the translated dinosaur back into 2D 

You can reproduce the code and check the coordinates to see that the dinosaur was indeed 
translated by (3, 1) in the final picture. Now let me show you how the trick works. 

5.3.2 Finding a 3D matrix for a 2D translation 

The columns of our “magic” matrix, like the columns of any matrix, tell us where the standard 
basis vectors end up after being transformed. Calling this matrix T, the vectors e1, e2, and e3 
would be transformed into the vectors Te1 = (1, 0, 0), Te2 = (0, 1, 0), and Te3 = (3, 1, 1). This 
means e1 and e2 are unaffected, and e3 changes only its x- and y-components (figure 5.29). 
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Figure 5.29: This matrix doesn’t move e1 or e2, but it does move e3. 

Any point in 3D and, therefore, any point on our dinosaur is built as a linear combination of e1, 
e2, and e3. For instance, the tip of the dinosaur’s tail is at (6, 4, 1), which is 6e1 + 4e2 + e3. 
Because T doesn’t move e1 or e2, only the effect on e3 moves the point, T(e3) = e3 + (3, 1, 0), 
so that the point is translated by +3 in the x direction and +1 in the y direction. You can also 
see this algebraically. Any vector (x, y, 1) is translated by (3, 1, 0) by this matrix: 

 
Equation 5.2 

If you want to translate a collection of 2D vectors by some vector (a, b), the general steps are 
as follows: 

1. Move the 2D vectors into the plane in 3D space, where z = 1 and each has a z-coordinate 
of 1. 

2. Multiply the vectors by the matrix with your given choices of a and b plugged in: 
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3. Delete the z-coordinate of all of the vectors so you are left with 2D vectors as a result. 

Now that we can do translations with matrices, we can creatively combine them with other linear 
transformations. 

5.3.3 Combining translation with other linear transformations 

In the previous matrix, the first two columns are exactly e1 and e2, meaning that only the change 
in e3 moves a figure. We don’t want T(e1) or T(e2) to have any z-component because that would 
move the figure out of the plane z = 1. But we can modify or interchange the other components 
(figure 5.30).  

 
Figure 5.30: Let’s see what happens when we move T(e1) and T(e2) in the x,y plane. 

It turns out you can put any 2x2 matrix in the top left (as shown by figure 5.30) by doing the 
corresponding linear transformation in addition to the translation specified in the third column. 
For instance, this matrix  

 
produces a 90° counterclockwise rotation. Inserting it in the translation matrix, we get a new 
matrix that rotates the x,y plane by 90° and then translates it by (3, 1) as shown in figure 5.31. 
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Figure 5.31: A matrix that rotates e1 and e2 by 90° and translates e3 by (3, 1). Any figure in the plane where z = 
1 experiences both transformations. 

To show this works, we can carry out this transformation on all of the 3D dinosaur vertices in 
Python. Figure 5.32 shows the output of the following code: 

rotate_and_translate = ((0,-1,3),(1,0,1),(0,0,1)) 
rotated_translated_dino = [ 
    multiply_matrix_vector(rotate_and_translate, v)  

    for v in dino_vectors_3d] 

 
Figure 5.32: The original dinosaur (left) and a second dinosaur (right) that is both rotated and translated by a 
single matrix 

Once you get the hang of doing 2D translations with a matrix, you can apply the same approach 
to doing a 3D translation. To do that, you’ll have to use a 4x4 matrix and enter the mysterious 
world of 4D. 

5.3.4 Translating 3D objects in a 4D world 

What is the fourth dimension? A 4D vector would be an arrow with some length, width, depth, 
and one other dimension. When we built 3D space from 2D space, we added a z-coordinate. 
That means that 3D vectors can live in the x,y plane, where z = 0, or they can live in any other 
parallel plane, where z takes a different value. Figure 5.33 shows some of these parallel planes. 
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Figure 5.33: Building 3D space out of a stack of parallel planes, each looking like the x,y plane but at different z-
coordinates 

We can think of four dimensions in analogy to this model: a collection of 3D spaces that are 
indexed by some fourth coordinate. One way to interpret the fourth coordinate is “time.” Each 
snapshot at a given time is a 3D space, but the collection of all of the snapshots is a fourth 
dimension called a spacetime. The origin of the spacetime is the origin of the space at the 
moment when time, t, is equal to 0 (figure 5.34). 

 
Figure 5.34: An illustration of 4D spacetime, similar to how a slice of 3D space at a given z value is a 2D plane 
and a slice of 4D spacetime at a given t value is a 3D space 

This is the starting point for Einstein’s theory of relativity. (In fact, you are now qualified to go 
read about this theory because it is based on 4D spacetime and linear transformations given by 
4x4 matrices.) 

Vector math is indispensable in higher dimensions because we quickly run out of good analogies. 
For five, six, seven, or more dimensions, I have a hard time picturing them, but the coordinate 
math is no harder than in two or three dimensions. For our current purposes, it’s sufficient to 
think of a 4D vector as a four-tuple of numbers. 

Let’s replicate the trick that worked for translating 2D vectors in 3D. If we start with a 3D vector 
like (x, y, z) and we want to translate it by a vector (a, b, c), we can attach a fourth coordinate 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

of 1 to the target vector and use an analogous 4D matrix to do the translation. Doing the matrix 
multiplication confirms that we get the desired result (figure 5.35). 

 
Figure 5.35: Giving the vector (x, y, z) a fourth coordinate of 1, we can translate the vector by (a, b, c) using this 
matrix. 

This matrix increases the x-coordinate by a, the y-coordinate by b, and the z-coordinate by c, 
so it does the transformation required to translate by the vector (a, b, c). We can package in a 
Python function the work of adding a fourth coordinate, applying this 4x4 matrix, and then 
deleting the fourth coordinate: 

def translate_3d(translation): 
    def new_function(target): #1 
        a,b,c = translation 
        x,y,z = target 
        matrix = ((1,0,0,a), 

            0,1,0,b), 
            (0,0,1,c), 
            (0,0,0,1)) #2 

        vector = (x,y,z,1) 
        x_out, y_out, z_out, _ =\ 

          multiply_matrix_vector(matrix,vector) #3 
        return (x_out,y_out,z_out) 
    return new_function 

#1 The translate_3d function takes a translation vector and returns a new function that applies that translation to a 3D 
vector. 

#2 Builds the 4x4 matrix for the translation, and on the next line, turns (x,y,z) into a 4D vector with a fourth coordinate 1 
#3 Does the 4D matrix transformation 

Finally, drawing the teapot as well as the teapot translated by (2, 2, -3), we can see that the 
teapot moves appropriately. You can confirm this by running matrix_translate_teapot.py. You 
should see the same image as in figure 5.36. 
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Figure 5.36: The untranslated teapot (left) and a translated teapot (right). As expected, the translated teapot 
moves up and to the right, and away from our viewpoint. 
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With translation packaged as a matrix operation, we can now combine that operation with other 
3D linear transformations and do them in one step. It turns out you can interpret the artificial 
fourth-coordinate in this setup as time, t. 

The two images in figure 5.36 could be snapshots of a teapot at t = 0 and t = 1, which is moving 
in the direction (2, 2, -3) at a constant speed. If you’re looking for a fun challenge, you can 
replace the vector (x, y, z, 1) in this implementation with vectors of the form (x, y, z, t), where 
the coordinate t changes over time. With t = 0 and t = 1, the teapot should match the frames 
in figure 5.36, and at the time between the two, it should move smoothly between the two 
positions. If you can figure out how this works, you’ll catch up with Einstein! 

So far, we’ve focused exclusively on vectors as points in space that we can render to a computer 
screen. This is clearly an important use case, but it only scratches the surface of what we can 
do with vectors and matrices. The study of how vectors and linear transformations work together 
in general is called linear algebra, and I’ll give you a broader picture of this subject in the next 
chapter, along with some fresh examples that are relevant to programmers. 

5.3.5 Exercises 

 
Exercise 5.26: Show that the 3D ‘magic’ matrix transformation does not work if you move a 2D figure such as the 
dinosaur we have been using to the plane z = 2. What happens instead? 
Solution: Using [(x,y,2) for x,y in dino_vectors] and applying the same 3x3 matrix, the dinosaur is 
translated twice as far by the vector (6, 2) instead of (3, 1). This is because the vector (0, 0, 1) is translated by (3, 1), 
and the transformation is linear. 

 
A dinosaur in the plane where z = 2 is translated twice as far by the same matrix. 
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Exercise 5.27: Come up with a matrix to translate the dinosaur by -2 units in the x direction and -2 units in the y 
direction. Execute the transformation and show the result. 
Solution: Replacing the values 3 and 1 in the original matrix with -2 and -2, we get 

 
The dinosaur, indeed, translates down and to the left by the vector (-2, -2). 

 
 

 
Exercise 5.28: Show that any matrix of the form 

  
doesn’t affect the z-coordinate of a 3D column vector it is multiplied by. 
Solution: If the initial z-coordinate of a 3D vector is a number z, this matrix leaves that coordinate unchanged: 
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Mini-project 5.29: Find a 3x3 matrix that rotates a 2D figure in the plane z = 1 by 45°, decreases its size by a factor of 
2, and translates it by the vector (2, 2). Demonstrate that it works by applying it to the vertices of the dinosaur. 
Solution: First, let’s find a 2x2 matrix for rotating a 2D vector by 45°: 
>>> from vectors import rotate2d 

>>> from transforms import * 

>>> from math import pi 

>>> rotate_45_degrees = curry2(rotate2d)(pi/4) #1 

>>> rotation_matrix = infer_matrix(2,rotate_45_degrees) 

>>> rotation_matrix 

((0.7071067811865476, -0.7071067811865475), (0.7071067811865475, 0.7071067811865476)) 

#1 Builds a function that executes rotate2d with an angle of 45° (or with 4 radians) for an input 2D vector 
This matrix is approximately: 

 
Similarly, we can find a matrix to scale by a factor of ½: 

 
Multiplying these matrices together, we accomplish both transformations at once with this code: 
>>> from matrices import * 

>>> scale_matrix = ((0.5,0),(0,0.5)) 

>>> rotate_and_scale = matrix_multiply(scale_matrix,rotation_matrix) 

>>> rotate_and_scale 

((0.3535533905932738, -0.35355339059327373), (0.35355339059327373, 

0.3535533905932738)) 
And this is a 3x3 matrix that translates the dinosaur by (2, 2) in the plane where z = 1: 

 
We can plug our 2x2 rotation and scaling matrix into the top left of this matrix, giving us the final matrix that we want: 
>>> ((a,b),(c,d)) = rotate_and_scale 

>>> final_matrix = ((a,b,2),(c,d,2),(0,0,1)) 

>>> final_matrix 
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((0.3535533905932738, -0.35355339059327373, 2), (0.35355339059327373, 

0.3535533905932738, 2), (0, 0, 1)) 

Moving the dinosaur to the plane z = 1, applying this matrix in 3D, and then projecting back to 2D gives us the rotated, 
scaled, and translated dinosaur, using only one matrix multiplication as shown here: 

 
 

 
Exercise 5.30: The matrix in the preceding exercise rotates the dinosaur by 45° and then translates it by (3, 1). Using 
matrix multiplication, build a matrix that does this in the opposite order. 
Solution: If the dinosaur is in the plane where z = 1, then the following matrix does a rotation by 90° with no 
translation: 

 
We want to translate first and then rotate, so we multiply this rotation matrix by the translation matrix: 
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This is different from the other matrix, which rotates before the translation. In this case, we see that the translation 
vector (3, 1) is affected by the 90° rotation. The new effective translation is (-1, 3). 
 

 
Exercise 5.31: Write a function analogous to translate_3d called translate_4d that uses a 5x5 matrix to 
translate a 4D vector by another 4D vector. Run an example to show that the coordinates are translated. 
Solution: The setup is the same, except that we lift the 4D vector to 5D by giving it a fifth coordinate of 1: 
def translate_4d(translation): 

    def new_function(target): 

        a,b,c,d = translation 

        x,y,z,w = target 

        matrix = ( 

            (1,0,0,0,a), 

            (0,1,0,0,b), 

            (0,0,1,0,c), 

            (0,0,0,1,d), 

            (0,0,0,0,1)) 

        vector = (x,y,z,w,1) 

        x_out,y_out,z_out,w_out,_ = multiply_matrix_vector(matrix,vector) 

        return (x_out,y_out,z_out,w_out) 

    return new_function 
We can see that the translation works (the effect is the same as adding the two vectors): 
>>> translate_4d((1,2,3,4))((10,20,30,40)) 

(11, 22, 33, 44) 

 

In the previous chapters, we used visual examples in 2D and 3D to motivate vector and matrix 
arithmetic. As we’ve gone along, we’ve put more emphasis on computation. At the end of this 
chapter, we calculated vector transformations in higher dimensions where we didn’t have any 
physical insight. This is one of the benefits of linear algebra: it gives you the tools to solve 
geometric problems that are too complicated to picture. We’ll survey the broad range of this 
application in the next chapter.  

5.4 Summary 
• A linear transformation is defined by what it does to standard basis vectors. When you 

apply a linear transformation to the standard basis, the resulting vectors contain all the 
data required to do the transformation. This means that only nine numbers are required 
to specify a 3D linear transformation of any kind (the three coordinates of each of these 
three resulting vectors). For a 2D linear transformation, four numbers are required. 

• In matrix notation, we represent a linear transformation by putting these numbers in a 
rectangular grid. By convention, you build a matrix by applying a transformation to the 
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standard basis vectors and putting the resulting coordinate vectors side by side as 
columns. 

• Using a matrix to evaluate the result of the linear transformation it represents on a given 
vector is called multiplying the matrix by the vector. When you do this multiplication, the 
vector is typically written as a column of its coordinates from top to bottom rather than 
as a tuple. 

• Two square matrices can also be multiplied together. The resulting matrix represents the 
composition of the linear transformations of the original two matrices.  

• To calculate the product of two matrices, you take the dot products of the rows of the 
first with the columns of the second. For instance, the dot product of row i of the first 
matrix and column j of the second matrix gives you the value in row i and column j of 
the product. 

• As square matrices represent linear transformations, non-square matrices represent 
linear functions from vectors of one dimension to vectors of another dimension. That is, 
these functions send vector sums to vector sums and scalar multiples to scalar multiples. 

• The dimension of a matrix tells you what kind of vectors its corresponding linear function 
accepts and returns. A matrix with m rows and n columns is called an m-by-n matrix 
(sometimes written mxn). It defines a linear function from n-dimensional space to m-
dimensional space. 

• Translation is not a linear function, but it can be made linear if you perform it in a higher 
dimension. This observation allows us to do translations (simultaneously with other linear 
transformations) by matrix multiplication. 
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Generalizing to higher dimensions 

This chapter covers 

• Implementing a Python abstract base class for general vectors 
• Defining vector spaces and listing their useful properties 
• Interpreting functions, matrices, images, and sound waves as vectors 
• Finding useful subspaces of vector spaces containing data of interest 

Even if you’re not interested in animating teapots, the machinery of vectors, linear 
transformations, and matrices can still be useful. In fact, these concepts are so useful there’s 
an entire branch of math devoted to them: linear algebra. Linear algebra generalizes everything 
we know about 2D and 3D geometry to study data in any number of dimensions. 

As a programmer, you’re probably skilled at generalizing ideas. When writing complex software, 
it’s common to find yourself writing similar code over and over. At some point, you catch yourself 
doing this, and you consolidate the code into one class or function capable of handling all of the 
cases you see. This saves you typing and often improves code organization and maintainability. 
Mathematicians follow the same process: after encountering similar patterns over and over, 
they can better state exactly what they see and refine their definitions. 

In this chapter, we use this kind of logic to define vector spaces. Vector spaces are collections 
of objects we can treat like vectors. These can be arrows in the plane, tuples of numbers, or 
objects completely different from the ones we’ve seen so far. For instance, you can treat images 
as vectors and take a linear combination of them (figure 6.1). 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 6.1: A linear combination of two pictures produces a new picture. 

The key operations in a vector space are vector addition and scalar multiplication. With these, 
you can make linear combinations (including negation, subtraction, weighted averages, and so 
on), and you can reason about which transformations are linear. It turns out these operations 
help us make sense of the word dimension. For instance, we’ll see that the images used in figure 
6.1 are 270,000-dimensional objects! We’ll cover higher-dimensional and even infinite-
dimensional spaces soon enough, but let’s start by reviewing the 2D and 3D spaces we already 
know. 

6.1 Generalizing our definition of vectors 
Python supports object-oriented programming (OOP), which is a great framework for 
generalization. Specifically, Python classes support inheritance: you can create new classes of 
objects that inherit properties and behaviors of an existing parent class. In our case, we want 
to realize the 2D and 3D vectors we’ve already seen as instances of a more general class of 
objects simply called vectors. Then any other objects that inherit behaviors from the parent 
class can rightly be called vectors as well. 

 
Figure 6.2: Treating 2D vectors, 3D vectors, and other objects as special cases of vectors using inheritance 

If you haven’t done object-oriented programming or you haven’t seen it done in Python, don’t 
worry. I stick to simple use cases in this chapter and will help you pick it up as we go. In case 
you want to learn more about classes and inheritance in Python before getting started, I’ve 
covered them in appendix B. 
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6.1.1 Creating a class for 2D coordinate vectors 

In code, our 2D and 3D vectors have been coordinate vectors, meaning that they were defined 
as tuples of numbers, which are their coordinates. (We also saw that vector arithmetic can be 
defined geometrically in terms of arrows, but we can’t translate that approach directly into 
Python code.) For 2D coordinate vectors, the data is the ordered pair of the x- and y-coordinates. 
A tuple is a great way to store this data, but we can equivalently use a class. We’ll call the class 
representing 2D coordinate vectors Vec2: 

class Vec2(): 
    def __init__(self,x,y): 
        self.x = x 
        self.y = y 

We can initialize a vector like v = Vec2(1.6,3.8) and retrieve its coordinates as v.x and v.y. 
Next, we can give this class the methods required to do 2D vector arithmetic, specifically 
addition and scalar multiplication. The addition function, add, takes a second vector as an 
argument and returns a new Vec2 object whose coordinates are the sum of the x- and y-
coordinates, respectively: 

class Vec2(): 
    ... #1 
    def add(self, v2): 
        return Vec2(self.x + v2.x, self.y + v2.y) 

#1 When adding to an existing class, I sometimes use … as a placeholder for existing code 

Doing vector addition with Vec2 could look like this: 

v = Vec2(3,4) # <1> 
w = v.add(Vec2(-2,6)) # <2> 
print(w.x) # <3> 

#1 Creates a new Vec2 called v with an x-coordinate 3 and y-coordinate 4 
#2 Adds a second Vec2 to v to produce a new Vec2 instance called w. This operation returns (3,4) + (-2,6) = (1,10). 
#3 Prints the x-coordinate of w. The result is 1. 

Like our original implementation of vector addition, we do not perform the addition “in-place.” 
That is, the two input vectors are not modified; a new Vec2 object is created to store the sum. 
We can implement scalar multiplication in a similar way, taking a scalar as input and returning 
a new, scaled vector as output: 

class Vec2(): 
    ... 
    def scale(self, scalar): 
        return Vec2(scalar * self.x, scalar * self.y) 

Vec(1,1).scale(50) returns a new vector with the x-and y-coordinates both equal to 50. 
There’s one more critical detail we need to take care of: currently the output of a comparison 
like Vec2(3,4) == Vec2(3,4) is False. This is problematic because these instances represent 
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the same vector. By default, Python compares instances by their references (asking whether 
they are located in the same place in memory) rather than by their values. We can fix this by 
overriding the equality method, which causes Python to treat the == operator differently for 
objects of the Vec2 class. (If you haven’t seen this before, appendix B explains it in more depth.) 

class Vec2(): 
    ... 
    def __eq__(self,other): 
        return self.x == other.x and self.y == other.y 

We want two 2D coordinate vectors to be equal if their x- and y-coordinates agree, and this new 
definition of equality captures that. With this implemented, you’ll find that Vec2(3,4) == 

Vec2(3,4). 

Our Vec2 class now has the fundamental vector operations of addition and scalar multiplication, 
as well as an equality test that makes sense. We can now turn our attention to some syntactic 
sugar.   

6.1.2 Improving the Vec2 class 

As we changed the behavior of the == operator, we can also customize the Python operators + 
and * to mean vector addition and scalar multiplication, respectively. This is called operator 
overloading, and it is covered in appendix B: 

class Vec2(): 
    ... 
    def __add__(self, v2): 
        return self.add(v2) 
    def __mul__(self, scalar): #1 
        return self.scale(scalar) 
    def __rmul__(self,scalar): #1 
        return self.scale(scalar) 

#1 The __mul__ and __rmul__ methods define both orders of multiplication, so we can multiply vectors by scalars on 
the left or the right. Mathematically, we consider both orders to mean the same thing. 

We can now write a linear combination concisely. For instance, 3.0 * Vec2(1,0) + 4.0 * 
Vec2(0,1) gives us a new Vec2 object with x-coordinate 3.0 and y-coordinate 4.0. It’s hard to 
read this in an interactive session though, because Python doesn’t print Vec2 nicely: 

>>> 3.0 * Vec2(1,0) + 4.0 * Vec2(0,1) 
<__main__.Vec2 at 0x1cef56d6390> 

Python gives us the memory address of the resulting Vec2 instance, but we already observed 
that’s not what’s important to us. Fortunately, we can change the string representation of Vec2 
objects by overriding the __repr__ method: 

class Vec2(): 
    ... 
    def __repr__(self): 
        return "Vec2({},{})".format(self.x,self.y) 
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This string representation shows the coordinates that are the most important data for a Vec2 
object. The results of Vec2 arithmetic are much clearer now: 

>>> 3.0 * Vec2(1,0) + 4.0 * Vec2(0,1) 
Vec2(3.0,4.0) 

We’re doing the same math here as we did with our original tuple vectors but, in my opinion, 
this is a lot nicer. Building a class required some boilerplate, like the custom equality we wanted, 
but it also enabled operator overloading for vector arithmetic. The custom string representation 
also makes it clear that we’re not just working with any tuples, but rather 2D vectors that we 
intend to use in a certain way. Now, we can implement 3D vectors represented by their own 
special class. 

6.1.3 Repeating the process with 3D vectors 

I’ll call the 3D vector class Vec3, and it looks a lot like the 2D Vec2 class except that its defining 
data will be three coordinates instead of two. In each method that explicitly references the 
coordinates, we need to make sure to properly use the x, y, and z values for Vec3. 

class Vec3(): 
    def __init__(self,x,y,z): #1 
        self.x = x 
        self.y = y 
        self.z = z 
    def add(self, other): 
        return Vec3(self.x + other.x, self.y + other.y, self.z + other.z) 
    def scale(self, scalar): 
        return Vec3(scalar * self.x, scalar * self.y, scalar * self.z) 
    def __eq__(self,other): 
        return (self.x == other.x  

                and self.y == other.y  
                and self.z == other.z) 

    def __add__(self, other): 
        return self.add(other) 
    def __mul__(self, scalar): 
        return self.scale(scalar) 
    def __rmul__(self,scalar): 
        return self.scale(scalar) 
    def __repr__(self): 
        return "Vec3({},{},{})".format(self.x,self.y, self.z) 

We can now write 3D vector math in Python using the built-in arithmetic operators: 

>>> 2.0 * (Vec3(1,0,0) + Vec3(0,1,0)) 
Vec3(2.0,2.0,0.0) 

This Vec3 class, much like the Vec2 class, puts us in a good place to think about generalization. 
There are a few different directions we can go, and like many software design choices, the 
decision is subjective. We could, for example, focus on simplifying the arithmetic.  Instead of 
implementing add differently for Vec2 and Vec3; they can both use the add function we built in 
chapter 3, which already handles coordinate vectors of any size. We could also store coordinates 
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internally as a tuple or list, letting the constructor accept any number of coordinates and create 
a 2D, 3D, or other coordinate vector. I’ll leave these possibilities as exercises for you, however, 
and take us in a different direction. 

The generalization I want to focus on is based on how we use the vectors, not on how they 
work. This gets us to a mental model that both organizes the code well and aligns with the 
mathematical definition of a vector. For instance, we can write a generic average function that 
can be used on any kind of vector: 

def average(v1,v2): 
    return 0.5 * v1 + 0.5 * v2 

We can insert either 3D vectors or 2D vectors; for instance, average(Vec2(9.0, 1.0), 

Vec2(8.0,6.0)) and average(Vec3(1,2,3), Vec3(4,5,6)) both give us correct and 
meaningful results. As a spoiler, we will soon be able to average pictures together as well. Once 
we’ve implemented a suitable class for images, we’ll be able to write average(img1, img2) and 
get a new image back. 

This is where we see the beauty and the economy that comes with generalization. We can write 
a single, generic function like average and use it for a wide variety of types of inputs. The only 
constraint on the input is that it needs to support multiplication by scalars and addition with one 
another. The implementation of arithmetic varies between Vec2 objects, Vec3 objects, images, 
or other kinds of data, but there’s always an important overlap in what arithmetic we can do 
with them. When we separate the what from the how, we open the door for code reuse and far-
reaching mathematical statements. 

How can we best describe what we can do with vectors separately from the details of how we 
carry them out? We can capture this in Python using an abstract base class. 

6.1.4 Building a vector base class 

The basic things we can do with Vec2 or Vec3 include constructing a new instance, adding with 
other vectors, multiplying by a scalar, testing equality with another vector, and representing an 
instance as a string. Of these, only addition and scalar multiplication are distinctive vector 
operations. Any new Python class automatically includes the rest. This prompts a definition of a 
Vector base class: 

from abc import ABCMeta, abstractmethod 
 
class Vector(metaclass=ABCMeta): 
    @abstractmethod 
    def scale(self,scalar): 
        pass 
    @abstractmethod 
    def add(self,other): 
        pass 
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The abc module contains helper classes, functions, and method decorators that help define an 
abstract base class, a class that is not intended to be instantiated. Instead, it’s designed to be 
used as a template for classes that inherit from it. The @abstractmethod decorator means that 
a method is not implemented in the base class and needs to be implemented for any child class. 
For instance, if you try to instantiate a vector with code like v = Vector(), you get the following 
TypeError: 

TypeError: Can't instantiate abstract class Vector with abstract methods add, scale 

This makes sense: there is no such thing as a vector that is “just a vector.” It needs to have 
some concrete manifestation such as a list of coordinates, an arrow in the plane, or something 
else. But this is still a useful base class because it forces any child class to include requisite 
methods. It is also useful to have this base class because we can equip it with all the methods 
that depend only on addition and scalar multiplication, like our operator overloads: 

class Vector(metaclass=ABCMeta): 
    ... 
    def __mul__(self, scalar): 
        return self.scale(scalar) 
    def __rmul__(self, scalar): 
        return self.scale(scalar) 
    def __add__(self,other): 
        return self.add(other) 

In contrast to the abstract methods scale and add, these implementations are automatically 
available to any child class. We can simplify Vec2 and Vec3 to inherit from Vector. Here’s a new 
implementation for Vec2: 

class Vec2(Vector): 
    def __init__(self,x,y): 
        self.x = x 
        self.y = y 
    def add(self,other): 
        return Vec2(self.x + other.x, self.y + other.y) 
    def scale(self,scalar): 
        return Vec2(scalar * self.x, scalar * self.y) 
    def __eq__(self,other): 
        return self.x == other.x and self.y == other.y 
    def __repr__(self): 
        return "Vec2({},{})".format(self.x, self.y) 

This has indeed saved us from repeating ourselves! The methods that were identical between 
Vec2 and Vec3 now live in the Vector class. All remaining methods on Vec2 are specific to 2D 
vectors; they need to be modified to work for Vec3 (as you will see in the exercises) or for 
vectors with any other number of coordinates.   

The Vector base class is a good representation of what we can do with vectors. If we can add 
any useful methods to it, chances are they will be useful for any kind of vector. For instance, 
we can add two methods to Vector: 

class Vector(metaclass=ABCMeta): 
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    ... 
    def subtract(self,other): 
        return self.add(-1 * other) 
    def __sub__(self,other): 
        return self.subtract(other) 

And without any modification of Vec2, we can automatically subtract them: 

>>> Vec2(1,3) - Vec2(5,1) 
Vec2(-4,2) 

This abstract class makes it easier to implement general vector operations, and it also agrees 
with the mathematical definition of a vector. Let’s switch languages from Python to English and 
see how the abstraction carries over from code to become a real mathematical definition. 

6.1.5 Defining vector spaces 

In math, a vector is defined by what it does rather than what it is, much like how we defined 
the abstract Vector class. Here’s a first (incomplete) definition of a vector. 

DEFINITION: A vector is an object equipped with a suitable way to add it to other vectors and multiply it by 

scalars. 

Our Vec2 or Vec3 objects, or any other objects inheriting from the Vector class can be added 
to each other and multiplied by scalars. This definition is incomplete because I haven’t said what 
“suitable” means, and that ends up being the most important part of the definition!  

There are a few important rules outlawing weird behaviors, many of which you might have 
already assumed. It’s not necessary to memorize all these rules. If you ever find yourself testing 
whether a new kind of object can be thought of as a vector, you can refer back to these rules. 
The first set of rules says that addition should be well-behaved. Specifically: 

1. Adding vectors in any order shouldn’t matter: v + w = w + v for any vectors v and w. 
2. Adding vectors in any grouping shouldn’t matter: u + (v + w) should be the same as (u 

+ v) + w, meaning that a statement like u + v + w should be unambiguous. 

A good counterexample is adding strings by concatenation. In Python, you can do the sum "hot" 
+ "dog", but this doesn’t support the case that strings can be vectors because the sums "hot" 
+ "dog" and "dog" + "hot" are not equal, violating rule 1. 

Scalar multiplication also needs to be well-behaved and compatible with addition. For instance, 
a whole number scalar multiple should be equal to a repeated addition (like 3v = v + v + v). 
Here are the specific rules: 

1. Multiplying vectors by several scalars should be the same as multiplying by all the scalars 
at once. If a and b are scalars and v is a vector, then a · (b · v) should be the same as 
(a · b) · v. 

2. Multiplying a vector by 1 should leave it unchanged: 1 · v = v. 
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3. Addition of scalars should be compatible with scalar multiplication: a · v + b · v should 
be the same as (a + b) · v. 

4. Addition of vectors should also be compatible with scalar multiplication: a · (v + w) should 
be the same as a · v + a · w. 

None of these rules should be too surprising. For instance, 3 · v + 5 · v could be translated to 
English as “3 of v added together plus 5 of v added together.” Of course, this is the same as 8 
of v added together, or 8 · v, agreeing with rule 5. 

The takeaway from these rules is that not all addition and multiplication operations are created 
equal. We need to verify each of the rules to ensure that addition and multiplication behave as 
expected. If so, the objects in question can rightly be called vectors. 

A vector space is a collection of compatible vectors. Here’s the definition: 

DEFINITION: A vector space is a collection of objects (called vectors), equipped with suitable vector addition 

and scalar multiplication operations, such that every linear combination of vectors in the collection produces a 

vector that is also in the collection. 

A collection like [Vec2(1,0), Vec2(5,-3), Vec2(1.1,0.8)] is a group of vectors that can be 
suitably added and multiplied, but it is not a vector space. For instance, 1 * Vec2(1,0) + 1 * 
Vec2(5,-3) is a linear combination whose result is Vec2(6,-3), which is not in the collection. 
One example of a vector space is the infinite collection of all possible 2D vectors. In fact, most 
vector spaces you meet are infinite sets: there are infinitely many linear combinations using 
infinitely many scalars after all! 

There are two implications of the fact that vector spaces need to contain all their scalar multiples, 
and these implications are important enough to mention on their own. First, no matter what 
vector v you pick in a vector space, 0 · v gives you the same result, which is called the zero 
vector and denoted as 0 (bold, to distinguish it from the number 0). Adding the zero vector to 
any vector leaves that vector unchanged: 0 + v = v + 0 = v. The second implication is that 
every vector v has an opposite vector, -1 · v, written as -v. Due to rule #5, v + -v = (1 + -1) 
· v = 0 · v = 0. For every vector, there is another vector in the vector space that “cancels it 
out” by addition. As an exercise, you can improve the Vector class by adding a zero vector and 
a negation function as required members. 

A class like Vec2 or Vec3 is not a collection per se, but it does describe a collection of values. In 
this way, we can think of the classes Vec2 and Vec3 as representing two different vector spaces, 
and their instances represent vectors. We’ll see a lot more examples of vector spaces with 
classes that represent them in the next section, but first, let’s look at how to validate that they 
satisfy the specific rules we’ve covered. 
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6.1.6 Unit testing vector space classes 

It was helpful to use an abstract Vector base class to think about what a vector should be able 
to do, rather than how it’s done. But even giving the base class an abstract add method doesn’t 
guarantee every inheriting class will implement a suitable addition operation.  

In math, the usual way we guarantee suitability is by writing a proof. In code, and especially in 
a dynamic language like Python, the best we can do is to write unit tests. For instance, we can 
check rule #6 from the previous section by creating two vectors and a scalar and making sure 
the equality holds: 

>>> s = -3 
>>> u, v = Vec2(42,-10), Vec2(1.5, 8) 
>>> s * (u + v) == s * v + s * u 
True 

This is often how unit tests are written, but it’s a pretty weak test because we’re only trying one 
example. We can make it stronger by plugging in random numbers and ensuring that it works. 
Here I use the random.uniform function to generate evenly distributed floating-point numbers 
between -10 and 10: 

from random import uniform 
 
def random_scalar(): 
    return uniform(-10,10) 
 
def random_vec2(): 
    return Vec2(random_scalar(),random_scalar()) 
 
a = random_scalar() 
u, v = random_vec2(), random_vec2() 
assert a * (u + v) == a * v + a * u 

Unless you’re lucky, this test will fail with an AssertionError. Here are the offending values of 
a, u, and v that caused the test to fail for me: 

>>> a, u, v 
(0.17952747449930084, 
 Vec2(0.8353326458605844,0.2632539730989293), 
 Vec2(0.555146137477196,0.34288853317521084)) 

And the expressions from the left and right of the equals sign in the assert call from the previous 
code have these values: 

>>> a * (u + v), a * u + a * v 
(Vec2(0.24962914431749222,0.10881923333807299), 
 Vec2(0.24962914431749225,0.108819233338073)) 

These are two different vectors, but only because their components differ by a few quadrillionths 
(very, very small numbers). This doesn’t mean that the math is wrong, just that floating-point 
arithmetic is approximate rather than exact.   

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

To ignore such small discrepancies, we can use another notion of equality suitable for testing. 
Python’s math.isclose function checks that two float values don’t differ by a significant amount 
(by default, by more than one-billionth of the larger value). Using that function instead, the test 
passes 100 times in a row: 

from math import isclose 
 
def approx_equal_vec2(v,w): 
    return isclose(v.x,w.x) and isclose(v.y,w.y) #1 
 
for _ in range(0,100): #2 
    a = random_scalar() 
    u, v = random_vec2(), random_vec2() 
    assert approx_equal_vec2(a * (u + v),  

                             a * v + a * u) #3 

#1 Tests whether the x and y components are close (even if not equal) 
#2 Runs the test for 100 different randomly-generated scalars and pairs of vectors 
#3 Replaces a strict equality check with the new function 

With the floating-point error removed from the equation, we can test all six of the vector space 
properties in this way: 

def test(eq, a, b, u, v, w): #<1> 
    assert eq(u + v, v + u) 
    assert eq(u + (v + w), (u + v) + w) 
    assert eq(a * (b * v), (a * b) * v) 
    assert eq(1 * v, v) 
    assert eq((a + b) * v, a * v + b * v) 
    assert eq(a * v + a * w, a * (v + w)) 

 
for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 
    u,v,w = random_vec2(), random_vec2(), random_vec2() 
    test(approx_equal_vec2,a,b,u,v,w) 

#1 Passes in the equality test function as eq. This keeps the test function agnostic as to the particular concrete vector 
implementation being passed in. 

This test shows that all six rules (properties) hold for 100 different random selections of scalars 
and vectors. That 600 randomized unit tests pass is a good indication that our Vec2 class 
satisfies the list of properties from the previous section. Once you implement the zero() 
property and the negation operator in the exercises, you can test a few more properties. 

This setup isn’t completely generic; we had to write special functions to generate random Vec2 
instances and to compare them. The important part is that the test function itself and the 
expressions within it are completely generic. As long as the class we’re testing inherits from 
Vector, it can run expressions like a * v + a * w and a * (v + w) that we can then test for 
equality. Now, we can go wild exploring all the different objects that can be treated as vectors, 
and we know how to test them as we go. 
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6.1.7 Exercises 

 
Exercise 6.1: Implement a Vec3 class inheriting from Vector. 
Solution: 
class Vec3(Vector): 

    def __init__(self,x,y,z): 

        self.x = x 

        self.y = y 

        self.z = z 

    def add(self,other): 

        return Vec3(self.x + other.x,  

                    self.y + other.y,  

                    self.z + other.z) 

    def scale(self,scalar): 

        return Vec3(scalar * self.x,  

                    scalar * self.y,  

                    scalar * self.z) 

    def __eq__(self,other): 

        return (self.x == other.x  

                and self.y == other.y  

                and self.z == other.z) 

    def __repr__(self): 

        return "Vec3({},{},{})".format(self.x, self.y, self.z) 

 

 
Mini-project 6.2: Implement a CoordinateVector class inheriting from Vector with an abstract property 
representing the dimension. This should save repetitious work when implementing specific coordinate vector classes. 
Inheriting from CoordinateVector and setting the dimension to 6 should be all you need to do to implement a 
Vec6 class. 
Solution: We can use the dimension-independent operations add and scale from chapters 2 and 3. The only thing not 
implemented in the following class is the dimension, and not knowing how many dimensions we’re working with 
prevents us from instantiating a CoordinateVector: 

from abc import abstractproperty 

from vectors import add, scale 

 

class CoordinateVector(Vector): 

    @abstractproperty 

    def dimension(self): 

        pass 

    def __init__(self,*coordinates): 
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        self.coordinates = tuple(x for x in coordinates) 

    def add(self,other): 

        return self.__class__(*add(self.coordinates, other.coordinates)) 

    def scale(self,scalar): 

        return self.__class__(*scale(scalar, self.coordinates)) 

    def __repr__(self): 

        return "{}{}".format(self.__class__.__qualname__, self.coordinates) 

Once we pick a dimension (say 6), we have a concrete class that we can instantiate: 
class Vec6(CoordinateVector): 

    def dimension(self): 

        return 6 

The definitions of addition, scalar multiplication, and so on are picked up from the CoordinateVector base class: 

>>> Vec6(1,2,3,4,5,6) + Vec6(1, 2, 3, 4, 5, 6) 

Vec6(2, 4, 6, 8, 10, 12) 
 

 
Exercise 6.3: Add a zero abstract method to the Vector class to return the zero vector in a given vector space, as well 
as an implementation for the negation operator. These are useful because we’re required to have a zero vector and 
negations of any vector in a vector space. 
Solution: 
from abc import ABCMeta, abstractmethod, abstractproperty 

 

class Vector(metaclass=ABCMeta): 

    ... 

    @classmethod    #1 

    @abstractproperty #2 

    def zero(): 

        pass 

     

    def __neg__(self): #3 

        return self.scale(-1) 

#1 zero is a class method because there’s only one zero value for any vector space 
#2 It’s also an abstract property because we haven’t said what zero is yet. 
#3 Special method name for overloading negation 

We don’t need to implement __neg__ for any child class because its definition is included in the parent class, based 
only on scalar multiplication. We do, however, need to implement zero for each class: 

class Vec2(Vector): 

    ... 

    def zero(): 

        return Vec2(0,0) 
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Exercise 6.4: Write unit tests to show that the addition and scalar multiplication operations for Vec3 satisfy the vector 
space properties. 
Solution: Because the test function is general, we only need to supply a new equality function for Vec3 objects and 100 
random sets of inputs: 
def random_vec3(): 

    return Vec3(random_scalar(),random_scalar(),random_scalar()) 

 

def approx_equal_vec3(v,w): 

    return isclose(v.x,w.x) and isclose(v.y,w.y) and isclose(v.z, w.z) 

     

for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_vec3(), random_vec3(), random_vec3() 

    test(approx_equal_vec3,a,b,u,v,w) 
 

 
Exercise 6.5: Add unit tests to check that 0 + v = v, 0 · v = 0, and -v + v = 0 for any vector v, where again 0 is the number 
zero and 0 is the zero vector. 
Solution: Because the zero vector is different, depending on which class we’re testing, we need to pass it in as an 
argument to the function: 
def test(zero,eq,a,b,u,v,w): 

    ... 

    assert eq(zero + v, v) 

    assert eq(0 * v, zero) 

    assert eq(-v + v, zero) 

We can test any vector class with a zero method implemented (see exercise 6.3): 

for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_vec2(), random_vec2(), random_vec2() 

    test(Vec2.zero(), approx_equal_vec2, a,b,u,v,w) 
 

 
Exercise 6.6: As equality is implemented for Vec2 and Vec3, it turns out that Vec2(1,2) == Vec3(1,2,3) returns 
True. Python’s duck typing is too forgiving for its own good! Fix this by adding a check that classes must match before 
testing vector equality. 
Solution: It turns out, we need to do the check for addition as well! 
class Vec2(Vector): 

    ... 

    def add(self,other): 
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        assert self.__class__ == other.__class__ 

        return Vec2(self.x + other.x, self.y + other.y) 

    ... 

    def __eq__(self,other): 

        return (self.__class__ == other.__class__ 

            and self.x == other.x and self.y == other.y) 
To be safe, you can add checks like this to other child classes of Vector as well. 
 

 
Exercise 6.7: Implement a __truediv__ function on Vector that allows you to divide vectors by scalars. You can 
divide vectors by a non-zero scalar by multiplying them by the reciprocal of the scalar (1.0/scalar). 
Solution: 
class Vector(metaclass=ABCMeta): 

    ... 

    def __truediv__(self, scalar): 

        return self.scale(1.0/scalar) 
With this implemented, you can do division like Vec2(1,2)/2, getting back Vec2(0.5,1.0). 
 

6.2 Exploring different vector spaces 
Now that you know what a vector space is, let’s look at some examples. In each case, we take 
a new kind of object and implement it as a class that inherits from Vector. At that point, no 
matter what kind of object it is, we can do addition, scalar multiplication, or any other vector 
operation with it. 

6.2.1 Enumerating all coordinate vector spaces 

We’ve spent a lot of time on the coordinate vectors Vec2 and Vec3 so far, so coordinate vectors 
in 2D and 3D don’t need much more explanation. It is worth reviewing, however, that a vector 
space of coordinate vectors can have any number of coordinates. Vec2 vectors have two 
coordinates, Vec3 vectors have three, and we could just as well have a Vec15 class with 15 
coordinates. We can’t picture it geometrically, but Vec15 objects represent points in a 15D 
space. 

One special case worth mentioning is the class we might call Vec1, vectors with a single 
coordinate. The implementation looks like this: 

class Vec1(Vector): 
    def __init__(self,x): 
        self.x = x 
    def add(self,other): 
        return Vec1(self.x + other.x) 
    def scale(self,scalar): 
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        return Vec1(scalar * self.x) 
    @classmethod 
    def zero(cls): 
        return Vec1(0) 
    def __eq__(self,other): 
        return self.x == other.x 
    def __repr__(self): 
        return "Vec1({})".format(self.x) 

This is a lot of boilerplate to wrap a single number, and it doesn’t give us any arithmetic we 
don’t already have. Adding and multiplying Vec1 scalar objects is just addition and multiplication 
of the underlying numbers:  

>>> Vec1(2) + Vec1(2) 
Vec1(4) 
>>> 3 * Vec1(1) 
Vec1(3) 

For this reason, we probably will never need a Vec1 class. But it is important to know that 
numbers on their own are vectors. The set of all real numbers (including integers, fractions, and 
irrational numbers like 𝜋𝜋) is denoted as ℝ, and it is a vector space in its own right. This is a 
special case where the scalars and the vectors are the same kind of objects.   

Coordinate vector spaces are denoted ℝn, where n is the dimension or number of coordinates. 
For instance, the 2D plane is denoted as ℝ2 and 3D space is denoted as ℝ3. As long as you use 
real numbers as your scalars, any vector space you stumble across is some ℝn in disguise.1 This 
is why we need to mention the vector space ℝ, even if it is boring. The other vector space we 
need to mention is the zero-dimensional one, ℝ0. This is the set of vectors with zero coordinates 
that we can describe as empty tuples or as a Vec0 class inheriting from Vector:  

class Vec0(Vector): 
    def __init__(self): 
        pass 
    def add(self,other): 
        return Vec0() 
    def scale(self,scalar): 
        return Vec0() 
    @classmethod 
    def zero(cls): 
        return Vec0() 
    def __eq__(self,other): 
        return self.__class__ == other.__class__ == Vec0 
    def __repr__(self): 
        return "Vec0()" 

 

 
1That is, as long as you can guarantee your vector space has only finitely many dimensions! There is a vector space called ℝ∞, but it is not the only infinitely 

dimensional vector space. 
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No coordinates don’t mean that there are no possible vectors; it means there is exactly one 
zero-dimensional vector. This makes zero-dimensional vector math stupidly easy: any result 
vector is always the same: 

>>> - 3.14 * Vec0() 
Vec0() 
>>> Vec0() + Vec0() + Vec0() + Vec0() 
Vec0() 

This is something like a singleton class from an OOP perspective. From a mathematical 
perspective, we know that every vector space has to have a zero vector, so we can think of 
Vec0() as being this zero vector. 

That covers it for coordinate vectors of dimensions zero, one, two, three, or more. Now, when 
you see a vector in the wild, you’ll be able to match it up with one of these vector spaces.  

6.2.2 Identifying vector spaces in the wild 

Let’s return to an example from chapter 1 and look at a data set of used Toyota Priuses. In the 
source code, you’ll see how to load the data set generously provided by my friend Dan Rathbone 
at CarGraph.com. To make the cars easy to work with, I’ve loaded them into a class: 

class CarForSale(): 
    def __init__(self, model_year, mileage, price, posted_datetime,  
                 model, source, location, description): 
        self.model_year = model_year 
        self.mileage = mileage 
        self.price = price 
        self.posted_datetime = posted_datetime 
        self.model = model 
        self.source = source 
        self.location = location 
        self.description = description 

It would be useful to think of CarForSale objects as vectors. Then, for example, I could average 
them together as a linear combination to see what the typical Prius for sale looks like. To do 
that, I need to retrofit this class to inherit from Vector. 

How can we add two cars? The numeric fields model_year, mileage, and price can be added 
like components of a vector, but the string properties can’t be added in a meaningful way. 
(Remember, you saw that we can’t think of strings as vectors.) When we do arithmetic on cars, 
the result is not a real car for sale but a virtual car defined by its properties. To represent this, 
I’ll change all the string properties to the string “(virtual)” to remind us of this. Finally, we 
can’t add datetimes, but we can add time spans. In figure 6.3, I use the day I retrieved the data 
as a reference point and add the time spans since the cars were posted for sale. The code for 
the entire process is shown in listing 6.1.  
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Figure 6.3: Timeline of cars posted for sale 

All this applies to scalar multiplication as well. We can multiply the numeric properties and the 
time span since posting by a scalar. The string properties are no longer meaningful, however. 

Listing 6.1: Making CarForSale behave like a Vector by implementing required methods 

from datetime import datetime 
 
class CarForSale(Vector): 

    retrieved_date = datetime(2018,11,30,12) #1 
    def __init__(self, model_year, mileage, price, posted_datetime,  
                 model="(virtual)",  

                         source="(virtual)", #2 
                 location="(virtual)", description="(virtual)"): 

        self.model_year = model_year 
        self.mileage = mileage 
        self.price = price 
        self.posted_datetime = posted_datetime 
        self.model = model 
        self.source = source 
        self.location = location 
        self.description = description 
    def add(self, other): 
        def add_dates(d1, d2): #3 
            age1 = CarForSale.retrieved_date - d1 
            age2 = CarForSale.retrieved_date - d2 
            sum_age = age1 + age2 
            return CarForSale.retrieved_date - sum_age 
        return CarForSale( #4 
            self.model_year + other.model_year, 
            self.mileage + other.mileage, 
            self.price + other.price, 
            add_dates(self.posted_datetime, other.posted_datetime) 
        ) 
    def scale(self,scalar): 
        def scale_date(d): #5 
            age = CarForSale.retrieved_date - d 
            return CarForSale.retrieved_date - (scalar * age) 
        return CarForSale( 
            scalar * self.model_year, 
            scalar * self.mileage, 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

            scalar * self.price, 
            scale_date(self.posted_datetime) 
        ) 

    @classmethod 
    def zero(cls): 
        return CarForSale(0, 0, 0, CarForSale.retrieved_date) 
 

#1 I retrieved the data set from CarGraph.com on 11/30/2018 at noon. 
#2 To simplify construction of virtual cars, all of the string parameters are optional with a default value “(virtual)”. 
#3 Helper function that adds dates by adding the time spans from the reference date 
#4 Adds CarForSale objects by adding underlying properties and constructing a new object 
#5 Helper function that scales a datetime by scaling the time span from the reference date 

In the source code, you’ll find the complete implementation of the class as well as the code to 
load a list of sample car data. With the list of cars loaded, we can try some vector arithmetic: 

>>> (cars[0] + cars[1]).__dict__ 
{'model_year': 4012, 
 'mileage': 306000.0, 
 'price': 6100.0, 
 'posted_datetime': datetime.datetime(2018, 11, 30, 3, 59), 
 'model': '(virtual)', 
 'source': '(virtual)', 
 'location': '(virtual)', 
 'description': '(virtual)'} 

The sum of the first two cars is evidently a Prius from model year 4012 (maybe it can fly?) with 
306,000 miles on it and going for an asking price of $6,100. It was posted for sale at 3:59 AM 
on the same day I looked at CarGraph.com. This unusual car doesn’t look too helpful, but bear 
with me, averages (as shown in the following) look a lot more meaningful: 

>>> average_prius = sum(cars, CarForSale.zero()) * (1.0/len(cars)) 
>>> average_prius.__dict__ 
 
{'model_year': 2012.5365853658536, 
 'mileage': 87731.63414634147, 
 'price': 12574.731707317074, 
 'posted_datetime': datetime.datetime(2018, 11, 30, 9, 0, 49, 756098), 
 'model': '(virtual)', 
 'source': '(virtual)', 
 'location': '(virtual)', 
 'description': '(virtual)'} 

We can learn real things from this result. The average Prius for sale is about 6 years old, has 
about 88,000 miles on it, is selling for about $12,500, and was posted at 9:49 AM the morning 
I accessed the website. (In Part 3, we spend a lot of time learning from data sets by treating 
them as vectors.) 

Ignoring the text data, CarForSale behaves like a vector. In fact, it behaves like a 4D vector 
having dimensions of price, model year, mileage, and datetime of posting. It’s not quite a 
coordinate vector because the posting date is not a number. Even though the data is not 
numeric, the class satisfies the vector space properties (you verify this with unit tests in the 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

exercises), so its objects are vectors and can be manipulated as such. Specifically, they are 4D 
vectors, so it is possible to write a 1-to-1 mapping between CarForSale objects and Vec4 objects 
(also an exercise for you). For our next example, we’ll see some objects that look even less like 
coordinate vectors but still satisfy the defining properties. 

6.2.3 Treating functions as vectors 

It turns out that mathematical functions can be thought of as vectors. Specifically, I’m talking 
about functions that take in a single real number and return a single real number, though there 
are plenty of other types of mathematical functions. The mathematical shorthand to say that a 
function f takes any real number and returns a real number is f: ℝ → ℝ. With Python, we’ll think 
of functions that take float values in and return float values. 

As with 2D or 3D vectors, we can do addition and scalar multiplication of functions visually or 
algebraically. To start, we can write functions algebraically; for instance, f(x) = 0.5 · x + 3 or 
g(x) = sin(x). Alternatively, we can visualize these with a graph.   

In the source code, I’ve written a simple plot function that draws the graph of one or more 
functions on a specified range of inputs (figure 6.4). For instance, the following code plots both 
of our functions f(x) and g(x) on x values between -10 and 10: 

def f(x): 
    return 0.5 * x + 3 
def g(x): 
    return sin(x) 
plot([f,g],-10,10) 

 
Figure 6.4: Graph of the functions f(x) = 0.5 · x + 3 and g(x) = sin(x) 

Algebraically, we can add functions by adding the expressions that define them. This means f + 
g is a function defined by (f + g)(x) = f(x) + g(x) = 0.5 · x + 3 + sin(x). Graphically, the y 
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values of each point are added, so it’s something like stacking the two functions together as 
shown in figure 6.5. 

 
Figure 6.5: Visualizing the sum of two functions on a graph 

To implement this sum, you can write some functional Python code. This code takes two 
functions as inputs and returns a new one, which is their sum: 

def add_functions(f,g): 
    def new_function(x): 
        return f(x) + g(x) 
    return new_function 

Likewise, we can multiply a function by a scalar by multiplying its expression by the scalar. For 
instance, 3g is defined by (3g)(x) = 3 · g(x) = 3 · sin(x). This has the effect of stretching the 
graph of the function g in the y direction by a factor of 3 (figure 6.6). 

 
Figure 6.6: The function (3g) looks like the function g stretched by a factor of 3 in the y direction. 
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It’s possible to nicely wrap Python functions in a class that inherits from vector, and I leave it 
as an exercise for you. After doing so, you can write satisfying function arithmetic expressions 
like 3 * f or 2 * f − 6 * g. You can even make the class callable or able to accept arguments as 
if it were a function to allow expressions like (f + g)(6). Unfortunately, unit testing to determine 
if functions satisfy the vector space properties is much harder because it’s difficult to generate 
random functions or to test whether two functions are equal. To really know if two functions are 
equal, you have to know that they return the same output for every single possible input. That 
means a test for every real number or at least every float value! 

This brings us to another question: what is the dimension of the vector space of functions? Or, 
to be concrete, how many real number coordinates are needed to uniquely identify a function?  

Instead of naming the coordinates of a Vec3 object x, y, and z, you could index them from i = 
1 to 3. Likewise, you could index the coordinates of a Vec15 from i = 1 to 15. A function, 
however, has infinitely many numbers that define it; for instance, the values f(x) for any value 
of x. In other words, you can think of the coordinates of f as being its values at every point, 
indexed by all real numbers instead of the first few integers. This means that the vector space 
of functions is infinite dimensional. This has important implications, but it mostly makes the 
vector space of all functions hard to work with. We’ll return to this space later, specifically 
looking at some subsets that are simpler. For now, let’s return to the comfort of finitely many 
dimensions and look at two more examples. 

6.2.4 Treating matrices as vectors 

Because an n-by-m matrix is a list of n · m numbers, albeit arranged in a rectangle, we can 
treat it as a n · m-dimensional vector. The only difference between the vector space of, say, 
5×3 matrices from the vector space of 15D coordinate vectors is that the coordinates are 
presented in a matrix. We still add and scalar multiply coordinate by coordinate. Figure 6.7 
shows how this addition looks. 

 
Figure 6.7: Adding two 5×3 matrices by adding their corresponding entries 
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Implementing a class for 5×3 matrices inheriting from Vector is more typing than simply 
implementing a Vec15 class because you need two loops to iterate over a matrix. The arithmetic, 
however, is no more complicated than as that shown in this listing. 

Listing 6.2: A class representing 5×3 matrices thought of as vectors 

class Matrix5_by_3(Vector): 
    rows = 5 #1 
    columns = 3 
    def __init__(self, matrix): 
        self.matrix = matrix 
    def add(self, other): 
        return Matrix5_by_3(tuple( 
            tuple(a + b for a,b in zip(row1, row2)) 
            for (row1, row2) in zip(self.matrix, other.matrix) 
        )) 
    def scale(self,scalar): 
        return Matrix5_by_3(tuple( 
            tuple(scalar * x for x in row) 
            for row in self.matrix 
        )) 
    @classmethod 
    def zero(cls): 
        return Matrix5_by_3(tuple( #2 
            tuple(0 for j in range(0, cls.columns)) 
            for i in range(0, cls.rows) 
        )) 

#1 You need to know the number of rows and columns to be able to construct the zero matrix. 
#2 The zero vector for 5×3 matrices is a 5×3 matrix consisting of all zeroes. Adding this to any other 5×3 matrix M 

returns M. 

You could just as well create a Matrix2_by_2 class or a Matrix99_by_17 class to represent 
different vector spaces. In these cases, much of the implementation would be the same, but the 
dimensions would no longer be 15, they would be 2 · 2 = 4 or 99 · 17 = 1,683. As an exercise, 
you can create a Matrix class inheriting from Vector that includes all the data except for 
specified numbers of rows and columns. Then any MatrixM_by_N class could inherit from 
Matrix. 

The interesting thing about matrices isn’t that they are numbers arranged in grids, but rather 
that we can think of them as representing linear functions. We already saw that lists of numbers 
and functions are two cases of vector spaces, but it turns out that matrices are vectors in both 
senses. If a matrix A has n rows and m columns, it represents a linear function from m-
dimensional space to n-dimensional space. (You can write A : ℝm → ℝn to say this same sentence 
in mathematical shorthand.)  

Just as we added and scalar-multiplied functions from ℝ → ℝ, so can we add and scalar multiply 
functions from ℝm → ℝn. In a mini-project at the end of this section, you can try running the 
vector space unit tests on matrices to check they are vectors in both senses. That doesn’t mean 
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grids of numbers aren’t useful in their own right; sometimes we don’t care to interpret them as 
functions. For instance, we can use arrays of numbers to represent images. 

6.2.5 Manipulating images with vector operations 

On a computer, images are displayed as arrays of colored squares called pixels. A typical image 
can be a few hundred pixels tall by a few hundred pixels wide. In a color image, three numbers 
are needed to specify the red, green, and blue (RGB) content of the color of any given pixel 
(figure 6.8). In total, a 300x300 pixel image is specified by 300 · 300 · 3 = 270,000 numbers. 
When thinking of images of this size as vectors, the pixels live in a 270,000-dimensional space! 

 
Figure 6.8: Zooming in on a picture of my dog, Melba, until we can pick out one pixel with red, green, and blue 
content (230, 105, 166, respectively) 

Depending on what format you’re reading this, you may or may not see the pink color of Melba’s 
tongue. But because we’ll represent color numerically rather than visually in this discussion, 
everything should still make sense. You can also see the pictures in full color in the source code 
for this book. 

Python has a de-facto standard image manipulation library, PIL, which is distributed in pip under 
the package name pillow. You won’t need to learn much about the library because we 
immediately encapsulate our use of it inside a new class (listing 6.3). This class, ImageVector, 
inherits from Vector, stores the pixel data of a 300x300 image, and supports addition and scalar 
multiplication. 

Listing 6.3: A class representing an image as a vector 

from PIL import Image 
class ImageVector(Vector): 
    size = (300,300) #1 
    def __init__(self,input): 
        try: 
            img = Image.open(input).\ 
                  resize(ImageVector.size) #2 
            self.pixels = img.getdata() 
        except: 
            self.pixels = input #3 
    def image(self): 
        img = Image.new('RGB', ImageVector.size) #4 
        img.putdata([(int(r), int(g), int(b))  
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                     for (r,g,b) in self.pixels]) 
        return img 
    def add(self,img2): #5 
        return ImageVector([(r1+r2,g1+g2,b1+b2)  
                            for ((r1,g1,b1),(r2,g2,b2))  
                            in zip(self.pixels,img2.pixels)]) 
    def scale(self,scalar): #6 
        return ImageVector([(scalar*r,scalar*g,scalar*b)  
                      for (r,g,b) in self.pixels]) 
    @classmethod 
    def zero(cls): #7 
        total_pixels = cls.size[0] * cls.size[1] 
        return ImageVector([(0,0,0) for _ in range(0,total_pixels)]) 
    def _repr_png_(self): #8 
        return self.image()._repr_png_() 

#1 Handles images of a fixed size: 300x300 pixels, for example 
#2 The constructor accepts the name of an image file. We create an Image object with PIL, resize it to 300x300, and 

then extract its list of pixels with the getdata() method. Each pixel is a triple consisting of red, green, and blue 
values. 

#3 The constructor also accepts a list of pixels directly. 
#4 This method returns the underlying PIL image, reconstructed from the pixels stored as an attribute on the class. The 

values must be converted to integers to create a displayable image. 
#5 Performs vector addition for images by adding the respective red, green, and blue values for each pixel 
#6 Performs scalar multiplication by multiplying every red, green, and blue value for every pixel by the given scalar 
#7 The zero image has zero red, green, or blue content at any pixel. 
#8 Jupyter notebooks can display PIL images inline, as long as we pass the implementation of the function _repr_png_ 

from the underlying image. 

Equipped with this library, we can load images by filename and do vector arithmetic with the 
images. For instance, the average of two pictures can be computed as a linear combination as 
follows with a result shown in figure 6.9: 

0.5 * ImageVector("inside.JPG") + 0.5 * ImageVector("outside.JPG") 

 
Figure 6.9: The average of two images of Melba as a linear combination 
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While any ImageVector is valid, the minimum and maximum color values that render as visually 
different are 0 and 255, respectively. Because of this, the negative of any image you import will 
be black, having gone below the minimum brightness at every pixel. Likewise, positive scalar 
multiples quickly become washed out with most pixels exceeding the maximum displayable 
brightness. Figure 6.10 shows these characteristics. 

 
Figure 6.10: Negation and scalar multiplication of an image 

To make visually interesting changes, you need to do operations that land you in the right 
brightness range for all colors. The zero vector (black) and the vector with all values equal to 
255 (white) are good reference points. For instance, subtracting an image from an all white 
image has the effect of reversing the colors. As figure 6.11 shows, for the following white vector  

white = ImageVector([(255,255,255) for _ in range(0,300*300)]) 

subtracting an image yields an eerily recolored picture. (The difference should be striking even 
if you’re looking at the picture in black and white.) 

 
Figure 6.11: Reversing the color of an image by subtracting it from a plain, white image 
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Vector arithmetic is clearly a general concept: the defining concepts of addition and scalar 
multiplication apply to numbers, coordinate vectors, functions, matrices, images, and many 
other kinds of objects. It’s striking to see such visual results when we apply the same math 
across unrelated domains. We’ll keep all of these examples of vector spaces in mind and continue 
to explore the generalizations we can make across them. 

6.2.6 Exercises 

 
Exercise 6.8: Run the vector space unit tests with float values for u, v, and w, rather than with objects inheriting from 
the Vector class. This demonstrates that real numbers are indeed vectors. 
Solution: With vectors as random scalars, the number zero as the zero vector, and math.isclose as the equality test, 
the 100 random tests pass: 
for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_scalar(), random_scalar(), random_scalar() 

    test(0, isclose, a,b,u,v,w) 
 

 
Mini-project 6.9: Run the vector space unit tests for CarForSale to show its objects form a vector space (ignoring 
their textual attributes). 
Solution: Most of the work is generating random data and building an approximate equality test that handles datetimes 
as shown here: 
from math import isclose 

from random import uniform, random, randint 

from datetime import datetime, timedelta 

 

def random_time(): 

    return CarForSale.retrieved_date - timedelta(days=uniform(0,10)) 

 

def approx_equal_time(t1, t2): 

    test = datetime.now() 

    return isclose((test-t1).total_seconds(), (test-t2).total_seconds()) 

 

def random_car(): 

    return CarForSale(randint(1990,2019), randint(0,250000),  

              27000. * random(), random_time()) 

 

def approx_equal_car(c1,c2): 

    return (isclose(c1.model_year,c2.model_year)  

            and isclose(c1.mileage,c2.mileage)  
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            and isclose(c1.price, c2.price) 

            and approx_equal_time(c1.posted_datetime, c2.posted_datetime)) 

     

for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_car(), random_car(), random_car() 

    test(CarForSale.zero(), approx_equal_car, a,b,u,v,w) 

 

 
Exercise 6.10: Implement the class Function(Vector) that takes a function of one variable as an argument to its 
constructor and implement a __call__ method so you can treat it as a function. You should be able to run 
plot([f,g,f+g,3*g],-10,10). 
Solution: 
class Function(Vector): 

    def __init__(self, f): 

        self.function = f 

    def add(self, other): 

        return Function(lambda x: self.function(x) + other.function(x)) 

    def scale(self, scalar): 

        return Function(lambda x: scalar * self.function(x)) 

    @classmethod 

    def zero(cls): 

        return Function(lambda x: 0) 

    def __call__(self, arg): 

        return self.function(arg) 

     

f = Function(lambda x: 0.5 * x + 3) 

g = Function(sin) 

 

plot([f, g, f+g, 3*g], -10, 10) 
The result of the last line is shown in this plot: 
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Our objects f and g behave like vectors, so we can add and scalar multiply them. Because they also behave like 
functions, we can plot them. 
 

 
Mini-project 6.11: Testing equality of functions is difficult. Do your best to write a function to test whether two functions 
are equal. 
Solution: Because we’re usually interested in well-behaved, continuous functions, it might be enough to check that their 
values are close for a few random input values as shown here: 
def approx_equal_function(f,g): 

    results = [] 

    for _ in range(0,10): 

        x = uniform(-10,10) 

        results.append(isclose(f(x),g(x))) 

    return all(results) 

Unfortunately, this can give us misleading results. The following returns True, even though the functions cannot be 
equal to zero: 
approx_equal_function(lambda x: (x*x)/x, lambda x: x) 

It turns out that computing equality of functions is an undecidable problem. That is, it has been proved there is no 
algorithm that can guarantee whether any two functions are the same. 
 

 
Mini-project 6.12: Unit test your Function class to demonstrate that functions satisfy the vector space properties. 
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Solution: It’s difficult to test function equality, and it’s also difficult to generate random functions. Here, I used a 
Polynomial class (that you’ll meet in the next section) to generate some random polynomial functions. Using 
approx_equal_function from the previous mini-project, we can get the test to pass: 

def random_function(): 

    degree = randint(0,5) 

    p = Polynomial(*[uniform(-10,10) for _ in range(0,degree)]) 

    return Function(lambda x: p(x)) 

 

for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_function(), random_function(), random_function() 

    test(Function.zero(), approx_equal_function, a,b,u,v,w) 
 

 
Mini-project 6.13: Implement a class Function2(Vector) that stores a function of two variables like f(x, y) = x + y. 
Solution: The definition is not much different than the Function class, but all functions are given two arguments: 

class Function(Vector): 

    def __init__(self, f): 

        self.function = f 

    def add(self, other): 

        return Function(lambda x,y: self.function(x,y) + other.function(x,y)) 

    def scale(self, scalar): 

        return Function(lambda x,y: scalar * self.function(x,y)) 

    @classmethod 

    def zero(cls): 

        return Function(lambda x,y: 0) 

    def __call__(self, *args): 

        return self.function(*args) 
For instance, the sum of f(x, y) = x + y and g(x, y) = x − y +1 should be 2x + 1. We can confirm this: 
>>> f = Function(lambda x,y:x+y) 

>>> g = Function(lambda x,y: x-y+1) 

>>> (f+g)(3,10) 

7 
 

 
Exercise 6.14: What is the dimension of the vector space of 9x9 matrices? 
a. 9 
b. 18 
c. 27 
d. 81 
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Solution: A 9x9 matrix has 81 entries, so there are 81 independent numbers (or coordinates) that determine it. It, 
therefore, is an 81-dimensional vector space and answer d is correct. 
 

 
Mini-project 6.15: Implement a Matrix class inheriting from Vector with abstract properties representing the 
number of rows and number of columns. You should not be able to instantiate a Matrix class, but you could make a 
Matrix5_by_3 class by inheriting from Matrix and explicitly specifying the number of rows and columns. 
Solution: 
class Matrix(Vector): 

    @abstractproperty 

    def rows(self): 

        pass 

    @abstractproperty 

    def columns(self): 

        pass 

    def __init__(self,entries): 

        self.entries = entries 

    def add(self,other): 

        return self.__class__( 

            tuple( 

                tuple(self.entries[i][j] + other.entries[i][j] 

                        for j in range(0,self.columns())) 

                for i in range(0,self.rows()))) 

    def scale(self,scalar): 

        return self.__class__( 

            tuple( 

                tuple(scalar * e for e in row)  

                for row in self.entries)) 

    def __repr__(self): 

        return "%s%r" % (self.__class__.__qualname__, self.entries) 

    def zero(self): 

        return self.__class__( 

            tuple( 

                tuple(0 for i in range(0,self.columns()))  

                for j in range(0,self.rows()))) 

We can now quickly implement any class representing a vector space of matrices of fixed size; for instance, 2x2: 
class Matrix2_by_2(Matrix): 

    def rows(self): 

        return 2 

    def columns(self): 

        return 2   

Then we can compute with 2x2 matrices as vectors: 
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>>> 2 * Matrix2_by_2(((1,2),(3,4))) + Matrix2_by_2(((1,2),(3,4))) 

Matrix2_by_2((3, 6), (9, 12)) 

 

 
Exercise 6.17: Unit test the Matrix5_by_3 class to demonstrate that it obeys the defining properties of a vector 
space. 
Solution: 
def random_matrix(rows, columns): 

    return tuple( 

        tuple(uniform(-10,10) for j in range(0,columns)) 

        for i in range(0,rows) 

    ) 

 

def random_5_by_3(): 

    return Matrix5_by_3(random_matrix(5,3)) 

     

def approx_equal_matrix_5_by_3(m1,m2): 

    return all([ 

        isclose(m1.matrix[i][j],m2.matrix[i][j])  

        for j in range(0,3) 

        for i in range(0,5) 

    ]) 

     

for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_5_by_3(), random_5_by_3(), random_5_by_3() 

    test(Matrix5_by_3.zero(), approx_equal_matrix_5_by_3, a,b,u,v,w) 

 

 
Mini-project 6.18: Write a LinearMap3d_to_5d class inheriting from Vector that uses a 5x3 matrix as its data but 
implements __call__ to act as a linear map from ℝ3 to ℝ5. Show that it agrees with Matrix5_by_3 in its 
underlying computations and that it independently passes the defining properties of a vector space. 
 

 
Mini-project 6.19: Write a Python function enabling you to multiply Matrix5_by_3 objects by Vec3 objects in the 
sense of matrix multiplication. Update your overloading of the * operator for the vector and matrix classes so you can 
multiply vectors on their left by either scalars or matrices. 
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Exercise 6.20: Convince yourself that the zero vector for the ImageVector class doesn’t visibly alter any image when 
it is added. 
Solution: For any image of your choice, look at the result of ImageVector("my_image.jpg") + 
ImageVector.zero(). 
 

 
Exercise 6.21: Pick two images and display 10 different weighted averages of them. These will be points on a line 
segment connecting the images in 270,000-dimensional space! 
Solution: I ran the following code with s = 0.1, 0.2, 0.3, …, 0.9, 1.0: 
s * ImageVector("inside.JPG") + (1-s) * ImageVector("outside.JPG") 
When you put your images side-by-side, you’ll get something like this: 

 
Several different weighted averages of two images 
 

 
Exercise 6.22: Adapt the vector space unit tests to images and run them. What do your randomized unit tests look like 
as images? 
Solution: One way to generate random images is to put random red, green, and blue values at every pixel; for example, 
def random_image(): 

    return ImageVector([(randint(0,255), randint(0,255), randint(0,255)) 

                            for i in range(0,300 * 300)]) 

 
The result is a fuzzy mess, but that doesn’t matter to us. The unit tests compare each pixel. With an approximate 
equality test such as the following, we can run the tests: 
def approx_equal_image(i1,i2): 

    return all([isclose(c1,c2) 

        for p1,p2 in zip(i1.pixels,i2.pixels) 
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        for c1,c2 in zip(p1,p2)]) 

 

for i in range(0,100): 

    a,b = random_scalar(), random_scalar() 

    u,v,w = random_image(), random_image(), random_image() 

    test(ImageVector.zero(), approx_equal_image, a,b,u,v,w) 
 

6.3 Looking for smaller vector spaces 
The vector space of 300x300 color images has a whopping 270,000 dimensions, meaning we 
need to list as many numbers to specify any image of that size. This isn’t a problematic amount 
of data on its own, but when we have larger images, a large quantity of images, or thousands 
of images chained together to make a movie, the data can add up. 

In this section, we look at how to start with a vector space and find smaller ones (having fewer 
dimensions) that retain most of the interesting data from the original space. With images, we 
can reduce the number of distinct pixels used in an image or convert it to black and white. The 
result may not be beautiful, but it can still be recognizable. For instance, the image on the right 
in figure 6.12 takes 900 numbers to specify, compared to the 270,000 numbers to specify the 
image on the left. 

 
Figure 6.12: Converting from an image specified by 270,000 numbers (left) to another one specified by 900 
numbers (right) 

Pictures that look like the one on the right live in a 900-dimensional subspace of a 270,000-
dimensional space. That means that they are still 270,000-dimensional image vectors, but they 
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can be represented or stored with only 900 coordinates. This is a starting point for a study of 
compression. We won’t go too deep into the best practices of compression, but we will take a 
close look at subspaces of vector spaces. 

6.3.1 Identifying subspaces 

A vector subspace, or subspace for short, is just what it sounds like: a vector space that exists 
inside another vector space. One example we’ve looked at a few times already is the 2D x,y 
plane within 3D space as the plane where z = 0. To be specific, the subspace consists of vectors 
of the form (x, y, 0). These vectors have three components, so they are veritable 3D vectors, 
but they form a subset that happens to be constrained to lie on a plane. For that reason, we say 
this is a 2D subspace of ℝ3. 

NOTE: At the risk of being pedantic, the 2D vector space ℝ2, which consists of the ordered pairs (x, y), is not 

technically a subspace of 3D space ℝ3. That’s because vectors of the form (x, y) are not 3D vectors. However, it 

has a one-to-one correspondence with the set of vectors (x, y, 0), and vector arithmetic looks the same whether 

or not the extra zero z-coordinate is present. For these reasons, I consider it okay to call ℝ2 a subspace of ℝ3. 

Not every subset of 3D vectors is a subspace. The plane where z = 0 is special because the 
vectors (x, y, 0) form a self-contained vector space. There’s no way to build a linear combination 
of vectors in this plane that somehow “escapes” it; the third coordinate always remains zero. In 
math lingo, the precise way to say that a subspace is self-contained is to say it is closed under 
linear combinations.  

To get the feel for what a vector subspace looks like in general, let’s search for subsets of vector 
spaces that are also subspaces (figure 6.13). What subsets of vectors in the plane can make a 
standalone vector space? Can we just draw any region in the plane and only take vectors that 
live within it? 

 
Figure 6.13: S is a subset of points (vectors) in the plane ℝ2. Is S a subspace of ℝ2? 
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The answer is no: the subset in figure 6.13 contains some vectors that lie on the x-axis and 
some that live on the y-axis. These can respectively be scaled to give us the standard basis 
vectors e1 = (1, 0) and e2 = (0, 1). From these vectors, we can make linear combinations to 
get to any point in the plane, not only the ones in S (figure 6.14). 

 
Figure 6.14: Linear combinations of two vectors in S give us an “escape route” from S. It cannot be a subspace 
of the plane. 

Instead of drawing a random subspace, let’s mimic the example of the plane in 3D. There is no 
z-coordinate, so let’s instead choose the points where y = 0. This leaves us with the points on 
the x-axis, having the form (x, 0). No matter how hard we try, we can’t find a linear combination 
of vectors of this form that have a non-zero y-coordinate (figure 6.15). 

 
Figure 6.15: Focusing on the line where y = 0. This is a vector space, containing all linear combinations of its 
points. 

This line, y = 0, is a vector subspace of ℝ2. As we originally found a 2D subspace of 3D, we also 
have found a 1D subspace of 2D. Instead of a 3D space or a 2D plane, a 1D vector space like 
this is called a line. In fact, we can identify this subspace as the real number line ℝ. 
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The next step could be to set x = 0 as well. Once we’ve set both x = 0 and y = 0 to zero, there’s 
only one point remaining: the zero vector. This is a vector subspace as well! No matter how you 
take linear combinations of the zero vector, the result is the zero vector. This is a zero-
dimensional subspace of the 1D line, the 2D plane, and the 3D space. Geometrically, a zero-
dimensional subspace is a point, and that point has to be zero. If it were some other point, v 
for instance, it would also contain 0 · v = 0 and an infinity of other different scalar multiples like 
3 · v and -42 · v. Let’s run with this idea. 

6.3.2 Starting with a single vector 

A vector subspace containing a non-zero vector v contains (at least) all of the scalar multiples 
of v. Geometrically, the set of all scalar multiples of a non-zero vector v lie on a line through 
the origin as shown in figure 6.16. 

 
Figure 6.16: Two different vectors with dotted lines, showing where all of their scalar multiples will lie. 

Each of these lines through the origin is a vector space. There’s no way to escape any line like 
this by adding or scaling vectors that lie in it. This is true of lines through the origin in 3D as 
well: they are all of the linear combinations of a single 3D vector, and they form a vector space. 
This is the first example of a general way of building subspaces: picking a vector and seeing all 
of the linear combinations that must come with it. 

6.3.3 Spanning a bigger space 

Given a set of one or more vectors, their span is defined as the set of all linear combinations. 
The important part of the span is that it’s automatically a vector subspace. To rephrase what 
we just discovered, the span of a single vector v is a line through the origin. We denote a set of 
objects by including them in curly braces, so the set containing only v is {v}, and the span of 
this set could be written span({v}). 

As soon as we include another vector w, which is not parallel to v, the space gets bigger because 
we are no longer constrained to a single linear direction. The span of the set of two vectors {v, 
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w} includes two lines, span({v}) and span({w}), as well as linear combinations including both 
v and w, which lie on neither line (figure 6.17). 

 
Figure 6.17: The span of two non-parallel vectors. Each individual vector spans a line, but together they span 
more points; for instance, v + w lies on neither line. 

It might not be obvious, but the span of these two vectors is the entire plane. This is true of any 
pair of non-parallel vectors in the plane, but most strikingly for the standard basis vectors. Any 
point (x, y) can be reached as the linear combination x · (1, 0) + y · (0, 1). The same is true 
for other pairs of non-parallel vectors like v = (1, 0) and w = (1, 1), but there’s a bit more 
arithmetic to see it.  

You can get any point like (4, 3) by taking the right linear combination of (1, 0) and (1, 1). The 
only way to get the y-coordinate of 3 is to have three of the vector (1, 1). That’s (3, 3) instead 
of (4, 3), so you can correct the x-coordinate by adding one unit of (1, 0). That gets us a linear 
combination 3 · (1, 1) + 1 · (1, 0), which takes us to the point (4, 3) as shown in figure 6.18. 

 
Figure 6.18: Getting to an arbitrary point (3,4) by a linear combination of (1,0) and (1,1) 
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A single non-zero vector spans a line in 2D or 3D, and it turns out, two non-parallel vectors can 
span either the whole 2D plane or a plane passing through the origin in 3D space. A plane 
spanned by two 3D vectors could look like that shown in figure 6.19. 

 
Figure 6.19: A plane spanned by two 3D vectors. 

It’s slanted, so it doesn’t look like the plane where z = 0, and it doesn’t contain any of the three 
standard basis vectors. But it’s still a plane and a vector subspace of 3D space. One vector spans 
a 1D space, and two non-parallel vectors span a 2D space. If we add a third non-parallel vector 
to the mix, do the three vectors span a 3D space? Figure 6.20 shows that clearly the answer is 
no. 

 
Figure 6.20: Three non-parallel vectors that only span a 2D space 

No pair of the vectors u, v, and w is parallel, but these vectors don’t span a 3D space. They all 
live in the 2D plane, so no linear combination of them can magically obtain a z-coordinate. We 
need a better generalization of the concept of “non-parallel” vectors. 
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If we want to add a vector to a set and span a higher dimensional space, the new vector needs 
to point in a new direction that isn’t included in the span of the existing ones. In the plane, three 
vectors always have some redundancy. For instance, as shown in figure 6.21, a linear 
combination of u and w gives us v. 

 
Figure 6.21: A linear combination of u and w returns v, so the span of u, v, and w should be no bigger than the 
span of u and w. 

The right generalization of “non-parallel” is “linearly independent.” A collection of vectors is 
linearly dependent if any of its members can be obtained as a linear combination of the others. 
Two parallel vectors are linearly dependent because they are scalar multiples of each other. 
Likewise, the set of three vectors {u, v, w} is linearly dependent because we can make v out 
of a linear combination of u and w (or w out of a linear combination of u and v, and so on). 
You should make sure to get a feel for this concept yourself. As one of the exercises at the end 
of this section, you can check that any of the three vectors (1, 0), (1, 1) and (-1, 1) can be 
written as a linear combination of the other two. 

By contrast, the set {u, v} is linearly independent because the components are non-parallel 
and cannot be scalar multiples of one another. This means that u and v span a bigger space 
than either on its own. Similarly, the standard basis {e1, e2, e3} for ℝ3 is a linearly independent 
set. None of these vectors can be built as a linear combination of the other two, and all three 
are required to span 3D space. We’re starting to get at the properties of a vector space or 
subspace that indicate its dimension. 

6.3.4 Defining the word dimension 

Here’s a motivational question: is the following set of 3D vectors linearly independent? 

{(1, 1, 1), (2, 0, -3), (0, 0, 1), (-1, -2, 0)} 
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To answer this, you could draw these vectors in 3D or attempt to find a linear combination of 
three of them to get the fourth. But there’s an easier answer: only three vectors are needed to 
span all of 3D space, so any list of four 3D vectors has to have some redundancy.  

We know that a set with one or two 3D vectors will span a line or plane, respectively, rather 
than all of ℝ3. Three is the magic number of vectors that can both span a 3D space and still be 
linearly independent. That’s really why we call it three-dimensional: there are three independent 
directions after all. 

A linearly independent set of vectors that spans a whole vector space like {e1, e2, e3} for ℝ3 is 
called a basis. Any basis for a space has the same number of vectors, and that number is its 
dimension. For instance, we saw (1, 0) and (1, 1) are linearly independent and span the whole 
plane, so they are a basis for the vector space ℝ2. Likewise (1, 0, 0) and (0, 1, 0) are linearly 
independent and span the plane where z = 0 in ℝ3. That makes them a basis for this 2D 
subspace, albeit not a basis for all of ℝ3. 

I have already used the word basis in the context of the “standard basis” for ℝ2 and for ℝ3. 
These are called “standard” because they are such natural choices. It takes no computation to 
decompose a coordinate vector in the standard basis; the coordinates are the scalars in this 
decomposition. For instance, (3, 2) means the linear combination 3 · (1, 0) + 2 · (0, 1) or 3e1 
+ 2e2. 

In general, deciding whether vectors are linearly independent requires some work. Even if you 
know that a vector is a linear combination of some other vectors, finding that linear combination 
requires doing some algebra. In the next chapter, we cover how to do that; it ends up being a 
ubiquitous computational problem in linear algebra. But before that let’s get in some more 
practice identifying subspaces and measuring their dimensions. 

6.3.5 Finding subspaces of the vector space of functions 

Mathematical functions from ℝ to ℝ contain an infinite amount of data, namely the output value 
when they are given any of infinitely many real numbers as inputs. That doesn’t mean that it 
takes infinite data to describe a function though. For instance, a linear function requires only 
two real numbers. They are the values of a and b in this general formula that you’ve probably 
seen: 

f(x) = ax + b 

where a and b can be any real number. This is much more tractable than the infinite-dimensional 
space of all functions. Any linear function can be specified by two real numbers, so it looks like 
the subspace of linear functions will be 2D.  

CAUTION: I’ve used the word linear in a lot of new contexts in the last few chapters. Here, I’m returning to a 

meaning you used in high school algebra: a linear function is a function whose graph is a straight line. 

Unfortunately, functions of this form are not linear in the sense we spent all of chapter 4 discussing, and you can 
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prove it yourself in an exercise. Because of this, I’ll try to be clear as to which sense of the word linear I’m using 

at any point. 

We can quickly implement a LinearFunction class inheriting from Vector. Instead of holding a 
function as its underlying data, it can hold two numbers for the coefficients a and b. We can add 
these functions by adding coefficients because 

(ax + b) + (cx + d) = (ax + cx) + (b + d) = (a + c)x + (b + d) 

And we can scale the function by multiplying both coefficients by the scalar: r(ax + b) = rax + 
rb. Finally, it turns out the zero function f(x) = 0 is linear. It’s the case where a = b = 0. Here’s 
the implementation: 

class LinearFunction(Vector): 
    def __init__(self,a,b): 
        self.a = a 
        self.b = b 
    def add(self,v): 
        return LinearFunction(self.a + v.a, self.b + v.b) 
    def scale(self,scalar): 
        return LinearFunction(scalar * self.a, scalar * self.b) 
    def __call__(self,x): 
        return self.a * x + self.b 
    @classmethod 
    def zero(cls): 
        return LinearFunction(0,0,0) 

As figure 6.22 shows, the result is a linear function plot([LinearFunction(-2,2)],-5,5) gives 
us the straight line graph of f(x) = -2x + 2. 

 
Figure 6.22: The graph of LinearFunction(-2,2) representing f(x) = -2x + 2 

We can prove to ourselves that linear functions form a vector subspace of dimension 2 by writing 
a basis. The basis vectors should both be functions, they should span the whole space of linear 
functions, and they should be linearly independent (not multiples of one another). Such a set is 
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{x, 1} or, more specifically, {f(x) = x, g(x) = 1}. Named this way, functions of the form ax + 
b can be written as a linear combination a · f + b · g. 

This is as close as we can get to a standard basis for linear functions: f(x) = x and f(x) = 1 are 
clearly different functions, not scalar multiples of one another. By contrast, f(x) = x and h(x) = 
4x are scalar multiples of one another and would not be a linearly independent pair. But {x, 1} 
is not the only basis we could have chosen; {4x + 1, x − 3} is also a basis. 

The same concept applies to quadratic functions having the form f(x) = ax2 + bx + c. These 
form a 3D subspace of the vector space of functions with one choice of basis being {x2, x, 1}. 
Linear functions form a vector subspace of the space of quadratic functions where the x2 
component is zero. Linear functions and quadratic functions are examples of polynomial 
functions, which are linear combinations of powers of x; for example, 

f(x) = a0 + a1x + a2x2 + … + an xn 

Linear and quadratic functions have degree 1 and 2, respectively, because those are the highest 
powers of x that appear in each. The polynomial written in the previous equation has degree n 
and n + 1 coefficients in total. In the exercises, you’ll see that the space of polynomials of any 
degree forms another vector subspace of the space of functions. 

6.3.6 Subspaces of images 

Because our ImageVector objects are represented by 270,000 numbers, we could follow the 
standard basis formula and construct a basis of 270,000 images, each with one of the 270,000 
numbers equal to 1 and all others equal to 0. The listing shows what the first basis vector would 
look like. 

Listing 6.4: Pseudocode that builds a first standard basis vector 

ImageVector([ 
    (1,0,0), (0,0,0), (0,0,0), ..., (0,0,0), #<1> 
    (0,0,0), (0,0,0), (0,0,0), ..., (0,0,0), #<2> 
    ... #<3> 
]) 

#1 Only the first pixel in the first row is non-zero: it has a red value of 1. All the other pixels have a value of (0,0,0). 
#2 The second row consists of 300 black pixels, each with a value (0,0,0). 
#3 I skipped the next 298 rows, but they are all identical to row 2; no pixels have any color values. 

This single vector spans a 1D subspace consisting of the images that are black except for a 
single, red pixel in the top left corner. Scalar multiples of this image could have brighter or 
dimmer red pixels at this location, but no other pixels can be illuminated. In order to show more 
pixels, we need more basis vectors. 

There’s not too much to be learned from writing out these 270,000 basis vectors. Let’s instead 
look for a small set of vectors that span an interesting subspace. Here’s a single ImageVector 
consisting of dark gray pixels at every position: 
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gray = ImageVector([ 
    (1,1,1), (1,1,1), (1,1,1), ..., (1,1,1), 
    (1,1,1), (1,1,1), (1,1,1), ..., (1,1,1), 
    ... 
]) 

More concisely, we could write this instead:  

gray = ImageVector([(1,1,1) for _ in range(0,300*300)]) 

One way to picture the subspace spanned by the single vector gray is to look at some vectors 
that belong to it. Figure 6.23 shows scalar multiples of gray. 

 
Figure 6.23: Some of the vectors in the 1D subspace of images spanned by the gray instance of 
ImageVector. 

This collection of images is “one-dimensional” in the colloquial sense. There’s only one thing 
changing about them, their brightness.  

Another way we can look at this subspace is by thinking about the pixel values. In this subspace, 
any image has the same value at each pixel. For any given pixel, there is a 3D space of color 
possibilities measured by red, green, and blue coordinates. Gray pixels form a 1D subspace of 
this, containing points with all coordinates s * (1, 1, 1) for some scalar s (figure 6.24).  
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Figure 6.24: Gray pixels of varying brightness on a line. The gray pixels form a 1D subspace of the 3D vector 
space of pixel values. 

Each of the images in the basis would be black, except for one pixel that would be a very dim 
red, green, or blue. Changing one pixel at a time doesn’t yield striking results, so let’s look for 
smaller and more interesting subspaces. 

There are many subspaces of images you can explore. You could look at solid color images of 
any color. These would be images of the form: 

ImageVector([ 
    (r,g,b), (r,g,b), (r,g,b), ..., (r,g,b), 
    (r,g,b), (r,g,b), (r,g,b), ..., (r,g,b), 
    ... 
]) 

There are no constraints on the pixels themselves; the only constraint on a solid color image is 
that every pixel is the same. As a final example, you could consider a subspace consisting of 
low resolution, grayscale images like that shown in figure 6.25. 
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Figure 6.25: A low resolution grayscale image. Each 10x10 block of pixels has the same value. 

Each 10x10 pixel block has a constant gray value across its pixels, making it look like a 30x30 
grid. There are only 30 · 30 = 900 numbers defining this image, so images like this one define 
a 900-dimensional subspace of the 270,000 dimensional space of images. It’s a lot less data, 
but it’s still possible to create recognizable images. 

One way to make an image in this subspace is to start with any image and average all red, 
green, and blue values in each 10x10 pixel block. This average gives you the brightness b, and 
you can set all pixels in the block to (b, b, b) to build your new image. This turns out to be a 
linear map (figure 6.26), and you can implement it later as a mini-project. 
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Figure 6.26: A linear map takes any image (left) and returns a new one (right) that lies in a 900-dimensional 
subspace. 

My dog, Melba, isn’t as photogenic in the second picture, but the picture is still recognizable. 
This is the example I mentioned at the beginning of the section, and the remarkable thing is 
that you can tell it’s the same picture with only 0.3% of the data. There’s clearly room for 
improvement, but the approach of mapping to a subspace is a starting point for more fruitful 
exploration. In chapter 10, we’ll see how to compress other kinds of data in this way, with even 
better fidelity. 

6.3.7 Exercises 

 
Exercise 6.23: Give a geometric argument for why the following region S of the plane can’t be a vector subspace of the 
plane. 
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Solution: There are many linear combinations of points in this region that don’t end up in the region. More obviously, 
this region cannot be a vector space because it doesn’t include the zero vector. The zero vector is a scalar multiple of 
any vector (by the scalar zero), so it must be included in any vector space or subspace. 
 

 
Exercise 6.24: Show that the region of the plane where x = 0 forms a 1D vector space. 
Solution: These are the vectors that lie on the y-axis and have the form (0, y) for a real number y. Addition and scalar 
multiplication of vectors of the form (0, y) is the same as for real numbers; there just happens to be an extra 0 along for 
the ride. We can conclude that this is ℝ in disguise and, therefore, a 1D vector space. If you want to be more rigorous, 
you can check all of the vector space properties explicitly. 
 

 
Exercise 6.25: Show that three vectors (1, 0), (1, 1), and (-1, 1) are linearly dependent by writing each one as a linear 
combination of the other two. 
Solution:  
(1, 0) = ½ · (1, 1) − ½ · (-1, 1) 
(1, 1) = 2 · (1, 0) + (-1, 1) 
(-1, 1) = (1, 1) − 2 · (1, 0) 
 

 
Exercise 6.26: Show that you can get any vector (x, y) as a linear combination of (1, 0) and (1, 1). 
Solution: We know that (1, 0) can’t contribute to the y-coordinate, so we need y times (1, 1) as part of the linear 
combination. To make the algebra work, we need (x − y) units of (1, 0): 
(x, y) = (x − y) · (1, 0) + y(1, 1) 
 

 
Exercise 6.27: Given a single vector v, explain why the set of all linear combinations of v is the same as the set of all 
scalar multiples of v. 
Solution: Linear combinations of a vector and itself reduce to scalar multiples according to one of the vector space 
laws. For instance, the linear combination a · v + b · v is equal to (a + b) · v. 
 

 
Exercise 6.28: From a geometric perspective, explain why a line that doesn’t pass through the origin is not a vector 
subspace (of the plane or of the 3D space). 
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Solution: One simple reason this cannot be a subspace is that it doesn’t contain the origin (the zero vector). Another 
reason is that such a line will have two non-parallel vectors. Their span would be the whole plane, which is much bigger 
than the line. 
 

 
Exercise 6.29: Any two of {e1, e2, e3} will fail to span all of ℝ3 and will instead span 2D subspaces of a 3D space. What 
are these subspaces? 
Solution: The span of the set {e1, e2} consists of all linear combinations a · e1 + b · e2, or a · (1, 0, 0) + b · (0, 1, 0) = (a, b, 
0). Depending on the choice of a and b, this can be any point in the plane where z = 0, often called the x,y plane. By the 
same argument, the vectors {e2, e3} span the plane where x = 0, called the y,z plane, and the vectors {e1, e3} span the 
plane where y = 0, called the x,z plane. 
 

 
Exercise 6.30: Write the vector (-5, 4) as a linear combination of (0, 3) and (-2, 1). 
Solution: Only (-2, 1) can contribute to the x-coordinate, so we need to have 2.5 · (-2, 1) in the sum. That gets us to (-5, 
2.5), so we need an additional 1.5 units on the x-coordinate or 0.5 · (0, 3). The linear combination is: 
(-5, 4) = 0.5 · (0, 3) + 2.5 · (-2, 1) 
 

 
Mini-project 6.31: Are (1, 2, 0), (5, 0, 5), and (2, -6,5) linearly independent or linearly dependent vectors? 
Solution: It’s not easy to find, but there is a linear combination of the first two vectors that yields the third: 
-3 · (1, 2, 0) + (5, 0, 5) = (2, -6, 5) 
This means that the third vector is redundant, and the vectors are linearly dependent. They only span a 2D subspace of 
3D rather than all of 3D space. 
 

 
Exercise 6.32: Explain why the linear function f(x) = ax + b is not a linear map from the vector space ℝ to itself unless b 
= 0. 
Solution: We can turn directly to the definition: a linear map must preserve linear combinations. We see that f doesn’t 
preserve linear combinations of real numbers. For instance, f(1+1) = 2a + b while f(1) + f(1) = (a + b) + (a + b) = 2a + 
2b. This won’t hold unless b = 0. 
As an alternative explanation, we know that linear functions ℝ → ℝ should be representable as 1-by-1 matrices. Matrix 
multiplication of a 1D column vector [x] by a 1-by-1 matrix [a] gives you [ax]. This is an unusual case of matrix 
multiplication, but your implementation from chapter 5 confirms this result. If a function ℝ → ℝ is going to be linear, it 
must agree with 1-by-1 matrix multiplication and, therefore, be multiplication by a scalar. 
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Exercise 6.33: Rebuild the LinearFunction class by inheriting from Vec2 and implementing the __call__ 
method. 
Solution: The data of a Vec2 are called x and y instead of a and b; otherwise, the functionality is the same. All you need 
to do is implement __call__: 

class LinearFunction(Vec2): 

    def __call__(self,input): 

        return self.x * input + self.y 

 

 
Exercise 6.34: Prove (algebraically!) that the linear function f(x) = ax + b forms a vector subspace of the vector space of 
functions. 
Solution: To prove this, you need to be sure a linear combination of two linear functions is another linear function. If f(x) 
= ax + b and g(x) = cx + d, then r · f + s · g returns: 
r · f + s · g = r · (ax + b) + s · (cx + d) = rax + b + scx + d = (ra + sc) · x + (b + d) 
Because (ra + sc) and (b + d) are scalars, this has the form we want. We can conclude that linear functions are closed 
under linear combinations and, therefore, that they form a subspace. 
 

 
Exercise 6.35: Find a basis for the set of 3-by-3 matrices. What is the dimension of this vector space? 
Solution: Here’s a basis consisting of nine, 3-by-3 matrices:  

 
They are linearly independent: each contributes a unique entry to any linear combination. They also span the space 
because any matrix can be constructed as a linear combination of these; the coefficient on any particular matrix 
decides one entry of the result. Because these nine vectors provide a basis for the space of 3-by-3 matrices, the space 
has nine dimensions. 
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Mini-project 6.36: Implement a class QuadraticFunction(Vector) that represents the vector subspace of 
functions of the form ax2 + bx + c. What is a basis for this subspace? 
Solution: The implementation looks a lot like LinearFunction, except there are three coefficients instead of two, 
and the __call__ function has a square term: 

class QuadraticFunction(Vector): 

    def __init__(self,a,b,c): 

        self.a = a 

        self.b = b 

        self.c = c 

    def add(self,v): 

        return QuadraticFunction(self.a + v.a,  

                                 self.b + v.b,  

                                 self.c + v.c) 

    def scale(self,scalar): 

        return QuadraticFunction(scalar * self.a,  

                                 scalar * self.b,  

                                 scalar * self.c) 

    def __call__(self,x): 

        return self.a * x * x + self.b * x + self.c 

    @classmethod 

    def zero(cls): 

        return QuadraticFunction(0,0,0) 

We can take note that ax2 + bx + c looks like a linear combination of the set {x2, x, 1}. Indeed, these three functions 
span the space, and none of these three can be written as a linear combination of the others. There’s no way to get a x2 
term by adding together linear functions, for example. Therefore, this is a basis. Because there are three vectors, we 
can conclude that this is a 3D subspace of the space of functions. 
 

 
Mini-project 6.37: I claimed that {4x + 1, x − 2} are a basis for the set of linear functions. Show that you can write -2x + 
5 as a linear combination of these two functions. 
Solution: (1/9) · (4x + 1) − (22/9) · (x − 2) = -2x + 5. If your algebra skills aren’t too rusty, you can figure this out by hand. 
Otherwise, don’t worry; we cover how to solve tricky problems like this in the next chapter. 
 

 
Mini-project 6.38: The vector space of all polynomials is an infinite-dimensional subspace. Implement that vector space 
as a class and describe a basis (which must be an infinite set!). 
Solution: 
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class Polynomial(Vector): 

    def __init__(self, *coefficients): 

        self.coefficients = coefficients 

    def __call__(self,x): 

        return sum(coefficient * x ** power  

                   for (power,coefficient)  

                   in enumerate(self.coefficients)) 

    def add(self,p): 

        return Polynomial([a + b  

                          for a,b  

                          in zip(self.coefficients,  

                                 p.coefficients)]) 

    def scale(self,scalar): 

        return Polynomial([scalar * a   

                           for a in self.coefficients]) 

        return "$ %s $" % (" + ".join(monomials)) 

    @classmethod 

    def zero(cls): 

        return Polynomial(0) 
A basis for the set of all polynomials is the infinite set {1, x, x2, x3, x4, …}. Given all of the possible powers of x at your 
disposal, you can build any polynomial as a linear combination. 
 

 
Exercise 6.39: I showed you pseudocode for a basis vector for the 270,000 dimensional space of images. What would 
the second basis vector look like? 
Solution: The second basis vector could be given by putting a one in the next possible place. It would yield a dim green 
pixel in the very top left of the image: 
ImageVector([ 

    (0,1,0), (0,0,0), (0,0,0), ..., (0,0,0), #<1> 

    (0,0,0), (0,0,0), (0,0,0), ..., (0,0,0), #<2> 

    ... 

]) 

#1 For the second basis vector, the 1 has moved to the second possible slot. 
#2 All other rows remain empty. 
 

 
Exercise 6.40: Write a function solid_color(r,g,b) that returns a solid color ImageVector with the given red, 
green, and blue content at every pixel. 
Solution: 
def solid_color(r,g,b): 

    return ImageVector([(r,g,b) for _ in range(0,300*300)]) 
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Mini-project 6.41: Write a linear map that generates an ImageVector from a 30x30 grayscale image, implemented 
as a 30x30 matrix of brightness values. Then, implement the linear map that takes a 300x300 image to a 30x30 
grayscale image by averaging the brightness (average of red, green, and blue) at each pixel. 
Solution: 
image_size = (300,300) 

total_pixels = image_size[0] * image_size[1] 

square_count = 30 #<1> 

square_width = 10 

 

def ij(n): 

    return (n // image_size[0], n % image_size[1]) 

 

def to_lowres_grayscale(img): #<2> 

 

    matrix = [ 

        [0 for i in range(0,square_count)] 

        for j in range(0,square_count) 

    ] 

    for (n,p) in enumerate(img.pixels): 

        i,j = ij(n) 

        weight = 1.0 / (3 * square_width * square_width) 

        matrix[i // square_width][ j // square_width] += (sum(p) * weight) 

    return matrix 

 

def from_lowres_grayscale(matrix): #<3> 

    def lowres(pixels, ij): 

        i,j = ij 

        return pixels[i // square_width][ j // square_width] 

    def make_highres(limg): 

        pixels = list(matrix) 

        triple = lambda x: (x,x,x) 

        return ImageVector([triple(lowres(matrix, ij(n))) for n in 

range(0,total_pixels)]) 

    return make_highres(matrix) 

#1 Indicates that we’re breaking the picture into a 30x30 grid 
#2 The function takes an ImageVector and returns an array of 30 arrays of 30 values each, giving grayscale values 
square by square. 
#3 The second function takes a 30x30 matrix and returns an image built from 10x10 pixel blocks, having a 
brightness given by the matrix values. 
Calling from_lowres_grayscale(to_lowres_grayscale(img)) transforms the image img in the way I 
showed in the chapter. 
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6.4 Summary 
• A vector space is a generalization of the 2D plane and 3D space: a collection of objects 

that can be added and multiplied by scalars. These addition and scalar multiplication 
operations must behave in certain ways (listed in section 6.1.5) to mimic the more 
familiar operations in 2D and 3D. 

• You can generalize in Python by pulling common features of different data types into an 
abstract base class and inheriting from it. 

• You can overload arithmetic operators in Python so that vector math looks the same in 
code, regardless of what kind of vectors you’re using. 

• Addition and scalar multiplication need to behave in certain ways to match your intuition, 
and you can verify these behaviors by writing unit tests involving random vectors. 

• Real-world objects like used cars can be described by several numbers (coordinates) and, 
therefore, treated as vectors. This lets us think about abstract concepts like a “weighted 
average of two cars.” 

• Functions can be thought of as vectors. You add or multiply them by adding or multiplying 
the expressions that define them. 

• Matrices can be thought of as vectors. The entries of an m×n matrix can be thought of 
as coordinates of an (m · n)-dimensional vector. Adding or scalar multiplying matrices 
has the same effect as adding or scalar multiplying the linear functions they define. 

• Images of a fixed height and width make up a vector space. They are defined by a red, 
green, and blue (RGB) value at each pixel, so the number of coordinates and, therefore, 
the dimension of the space is defined by three times the number of pixels. 

• A subspace of a vector space is a subset of the vectors in a vector space, which is a 
vector space on its own. That is, linear combinations of vectors in the subspace stay in 
the subspace. 

• For any line through the origin in 2D or 3D, the set vectors that lie on it form a 1D 
subspace. For any plane through the origin in 3D, the vectors that lie on it form a 2D 
subspace. 

• The span of a set of vectors is the collection of all linear combinations of the vectors. It 
is guaranteed to be a subspace of whatever space the vectors live in. 

• A set of vectors is linearly independent if you can’t make any one of them as a linear 
combination of the others. Otherwise, the set is linearly dependent. A set of linearly 
independent vectors that span a vector space (or subspace) is called a basis for that 
space. For a given space, any basis will have the same number of vectors. That number 
defines the dimension of the space. 

• When you can think of your data as living in a vector space, subspaces often consist of 
data with similar properties. For instance, the subset of image vectors that are solid 
colors forms a subspace. 
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Solving systems of linear 

equations 

This chapter covers 

• Detecting collisions of objects in a 2D video game 
• Writing equations to represent lines and finding where lines intersect in the plane 
• Picturing and solving systems of linear equations in 3D or beyond 
• Re-writing vectors as linear combinations of other vectors 

When you think of algebra, you probably think of problems that require “solving for x.” For 
instance, you probably spent quite a bit of time in algebra class learning to solve equations like 
3x2 + 2x + 4 = 0; that is, figuring out what value or values of x make the equation true. 

Linear algebra, being a branch of algebra, has the same kinds of computational questions. The 
difference is that what you want to solve for may be a vector or matrix rather than a number. 
If you take a traditional linear algebra course, you might cover a lot of algorithms to solve these 
kinds of problems. But because you have Python at your disposal, you only need to know how 
to recognize the problem you’re facing and choose the right library to find the answer for you. 

I’m going to cover the most important class of linear algebra problems you’ll see in the wild: 
systems of linear equations. These problems boil down to finding points where lines, planes, or 
their higher dimensional analogies intersect. One example is the infamous high school math 
problem involving two trains leaving Boston and New York at different times and speeds. But 
because I don’t assume railroad operation interests you, I’ll use a more entertaining example. 

In this chapter, we build a simple remake of the classic Asteroids arcade game (figure 7.1). In 
this game, the player controls a triangle representing a spaceship and fires a laser at polygons 
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floating around it, which represent asteroids. The player must destroy the asteroids to prevent 
them from hitting and destroying the spaceship. 

 
Figure 7.1: Setup of the classic Asteroids arcade game 

One of the key mechanics in this game is deciding whether the laser hits an asteroid. This 
requires us to figure out whether the line defining the laser beam intersects with the line 
segments outlining the asteroids. If these lines intersect, the asteroid is destroyed. We’ll set up 
the game first and then we’ll see how to solve the underlying linear algebra problem. 

After we implement our game, I’ll show you how this 2D example generalizes to 3D or any 
number of dimensions. The latter half of this chapter covers a bit more theory, but it will round 
out your linear algebra education. We’ll have covered many of the major concepts you’d find in 
a college-level linear algebra class, albeit in less depth. After completing this chapter, you should 
be well prepared to crack open a denser textbook on linear algebra and fill in the details. But 
for now, let’s focus on building our game. 

7.1 Designing an arcade game 
In this chapter, I focus on a simplified version of the asteroid game where the ship and asteroids 
are static. In the source code, you’ll see that I already made the asteroids move, and we’ll cover 
how to make them move according to the laws of physics in part 2 of this book. To get started, 
we model the entities of the game—the spaceship, the laser, and the asteroids—and show how 
to render them onscreen. 
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7.1.1 Modeling the game 

In this section, we display the spaceship and the asteroids as polygons in the game. As before, 
we model these as collections of vectors. For instance, we can represent an eight-sided asteroid 
by eight vectors (indicated by arrows in figure 7.2), and we can connect them to draw its outline. 

 
Figure 7.2: An eight-sided polygon representing an asteroid. 

The asteroid or spaceship translates or rotates as it travels through space, but its shape remains 
the same. Therefore, we store the vectors representing this shape separately from the x- and 
y-coordinates of its center, which can change over time. We also store an angle, indicating the 
rotation of the object at the current moment. The PolygonModel class represents a game entity 
(the ship or an asteroid) that keeps its shape but can translate or rotate. It’s initialized with a 
set of vector points that define the outline of the asteroid, and by default, its center x- and y-
coordinates and its angle of rotation are set to zero: 

class PolygonModel(): 
    def __init__(self,points): 
        self.points = points 
        self.rotation_angle = 0 
        self.x = 0 
        self.y = 0 

When the spaceship or asteroid moves, we need to apply the translation by self.x,self.y and 
the rotation by self.rotation_angle to find out its actual location. As an exercise, you can 
give PolygonModel a method to compute the actual, transformed vectors outlining it. 

The spaceship and asteroids are specific cases of PolygonModel that initialize automatically with 
their respective shapes. For instance, the ship has a fixed triangular shape, given by three 
points: 

class Ship(PolygonModel): 
    def __init__(self): 
        super().__init__([(0.5,0), (-0.25,0.25), (-0.25,-0.25)]) 
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For the asteroid, we initialize it with somewhere between 5 and 9 vectors at equally spaced 
angles and random lengths between 0.5 and 1.0. This randomness gives the asteroids some 
character: 

class Asteroid(PolygonModel): 
    def __init__(self): 
        sides = randint(5,9) #<1> 
        vs = [vectors.to_cartesian((uniform(0.5,1.0), 2*pi*i/sides)) #<2> 
                for i in range(0,sides)] 
        super().__init__(vs) 

#1 An asteroid has a random number of sides between 5 and 9. 
#2 Lengths are randomly selected between 0.5 and 1.0, and the angles are multiples of 2𝜋𝜋/n, where n is the number of 

sides. 

With these objects defined, we can turn our attention to instantiating them and rendering them 
onscreen. 

7.1.2 Rendering the game 

For the initial state of the game, we need a ship and several asteroids. The ship can begin at 
the center of the screen, but the asteroids should be randomly spread out over the screen. We 
can show an area of the plane ranging from -10 to 10 in the x and y directions like this: 

ship = Ship() 
 
asteroid_count = 10 
asteroids = [Asteroid() for _ in range(0,asteroid_count)] #<1> 
 
for ast in asteroids: #<2> 
    ast.x = randint(-9,9) 
    ast.y = randint(-9,9) 

#1 Creates a list of a specified number of Asteroid objects; in this case, 10 
#2 Sets the position of each object to a random point with coordinates between -10 and 10 so it shows up onscreen. 

I use a 400x400 pixel screen, which requires transforming the x- and y-coordinates before 
rendering them. Using PyGame’s built-in 2D graphics instead of OpenGL, the top left pixel on 
the screen has the coordinate (0, 0) and the bottom right has the coordinate (400, 400). These 
coordinates are not only bigger, they’re also translated and upside down, so we need to write a 
to_pixels function (illustrated in figure 7.3) that does the transformation from our coordinate 
system to PyGame’s pixels. 
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Figure 7.3: The to_pixels function maps an object from the center of our coordinate system to the center of 
the PyGame screen. 

With the to_pixels function implemented, we can write a function to draw a polygon defined 
by points to the PyGame screen. First, we take the transformed points (translated and rotated) 
that define the polygon and convert them to pixels. Then we draw them with a PyGame function: 

GREEN = (0, 255, 0) 
def draw_poly(screen, polygon_model, color=GREEN): 
    pixel_points = [to_pixels(x,y) for x,y in polygon_model.transformed()] 
    pygame.draw.aalines(screen, color, True, pixel_points, 10) #<1> 

 

#1 Draws lines connecting given points to a specified PyGame object. The True parameter connects the first and last 
points to create a closed polygon. 

You can see the whole game loop in the source code, but it basically calls draw_poly for the 
ship and each asteroid every time a frame is rendered. The result is our simple triangular 
spaceship surrounded by an asteroid field in a PyGame window (figure 7.4). 
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Figure 7.4: The game rendered in a PyGame window. 

7.1.3 Shooting the laser  

Now it’s time for the most important part: giving our ship a way to defend itself! The player 
should be able to aim the ship using the left and right arrow keys and then shoot a laser by 
pressing the spacebar. The laser beam should come out of the tip of the spaceship and extend 
to the edge of the screen. 

In the 2D world we’ve invented, the laser beam should be a line segment starting at the 
transformed tip of the spaceship and extending in whatever direction the ship is pointed. We 
can make sure it reaches the end of the screen by making it sufficiently long. Because the laser’s 
line segment is associated with the state of the Ship object, we can make a method on the Ship 
class to compute it: 

class Ship(PolygonModel): 
    ... 
   def laser_segment(self): 

        dist = 20. * sqrt(2) #<1> 
        x,y = self.transformed()[0] #<2> 
        return ((x,y),  
            (x + dist * cos(self.rotation_angle),  
             y + dist*sin(self.rotation_angle))) #<3> 

#1 Uses the Pythagorean theorem to find the longest segment that fits onscreen  
#2 Gets the value of the first of the definition points (the tip of the ship)  
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#3 Uses trigonometry to find an endpoint for the laser if it extends dist units from the tip (x,y) at a self.rotation_angle 
(figure 7.5) 

 
Figure 7.5: Using trigonometry to find the off-screen point where the laser beam ends 

In the source code, you can see how to make PyGame respond to keystrokes and draw the laser 
as a line segment only if the spacebar is pressed. Finally, if the player fires the laser and hits an 
asteroid, we want to know something happened. In every iteration of the game loop, we want 
to check each asteroid to see if it is currently hit by the laser. We do this with a 
does_intersect(segment) method on the PolygonModel class, which computes whether the 
input segment intersects any segment of the given PolygonModel. The final code includes some 
lines like the following: 

    laser = ship.laser_segment() #<1> 
     

    keys = pygame.key.get_pressed() #<2> 
    if keys[pygame.K_SPACE]: 
        draw_segment(*laser) 
 
        for asteroid in asteroids: 
            if asteroid.does_intersect(laser): #<3> 
                asteroids.remove(asteroid) 

#1 Calculates the line segment representing the laser beam based on the ship’s current position and orientation 
#2 Detects which keys are pressed. If the spacebar is pressed, renders the laser beam to the screen with a helper 

function draw_segment (similar to draw_poly). 
#3 For every asteroid, checks whether the laser line segment intersects it. If so, destroys the given asteroid by removing 

it from the list of asteroids. 
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The work that remains is implementing the does_intersect(segment) method. In the next 
section, we cover the math to do so. 

7.1.4 Exercises 

 
Exercise 7.1: Implement a transformed() method on the PolygonModel that returns the points of the model 
translated by the object’s x and y attributes and rotated by its rotation_angle attribute. 
Solution: Make sure to apply the rotation first; otherwise, the translation vector is rotated by the angle as well; for 
example, 
class PolygonModel(): 

    ... 

    def transformed(self): 

        rotated = [vectors.rotate2d(self.rotation_angle, v) for v in self.points] 

        return [vectors.add((self.x,self.y),v) for v in rotated] 
 

 
Exercise 7.2: Write a function to_pixels(x,y) that takes a pair of x- and y-coordinates in the square where -10 < x < 
10 and -10 < y < 10 and maps them to the corresponding PyGame x and y pixel coordinates, each ranging from 0 to 
400. 
Solution: 
width, height = 400, 400 

def to_pixels(x,y): 

    return (width/2 + width * x / 20, height/2 - height * y / 20) 

 

7.2 Finding intersection points of lines 
The problem at hand is to decide whether the laser beam hits the asteroid. To do this, we’ll look 
at each line segment defining the asteroid and decide whether it intersects with the segment 
defining the laser beam. There are a few algorithms we could use, but we’ll solve this as a 
system of linear equations in two variables. Geometrically, this means looking at the lines 
defined by an edge of the asteroid and the laser beam and seeing where they intersect (figure 
7.6). 
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Figure 7.6: The laser hitting an edge of an asteroid (left) and the corresponding system of linear equations 
(right). 

Once we know the location of the intersection, we can see whether it lies within the bounds of 
both segments. If so, the segments collide and the asteroid is hit. We first review equations for 
lines in the plane, then cover how to find where pairs of lines intersect. Finally, we write the 
code for the does_intersect method for our game. 

7.2.1 Choosing the right formula for a line 

In the previous chapter, we saw that 1D subspaces of the 2D plane are lines. These subspaces 
consist of all of the scalar multiples t · v for a single chosen vector v. Because one such scalar 
multiple is 0 · v, these lines always pass through the origin, so t · v is not quite a general formula 
for any line we encounter. 

If we start with a line through the origin and translate it by another vector u, we can get any 
possible line. The points on this line have the form u + t · v for some scalar t. For instance, take 
v = (2, -1). Points of the form t · (2, -1) lie on a line through the origin. But if we translate by 
a second vector, u = (2, 3), the points are now (2, 3) + t · (2, -1), which constitute a line that 
doesn’t pass through the origin (figure 7.7).  
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Figure 7.7: Vectors u = (2, 3) and v = (2, -1). Points of the form u + t · v lie on a straight line. 

Any line can be described as the points u + t · v for some selection of vectors u and v and all 
possible scalar multiples t. This is probably not the general formula for a line you’re used to. 
Instead of writing y as a function of x, we’ve given both the x- and y-coordinates of points on 
the line as functions of another parameter t. Sometimes, you’ll see the line written r(t) = u + t 
· v to indicate that this line is a vector-valued function of the scalar parameter t. The input t 
decides how many units of v you go from the starting point u to get the output r(t). 

The advantage of this kind of formula for a line is that it’s dead simple to find if you have two 
points on the line. If your points are u and w, then you can use u as the translation vector, and 
w − u as the vector that is scaled (figure 7.8). 

 
Figure 7.8: Given u and w, the line that connects them is r(t) = u + t · (w − u). 

The formula r(t) = u + t · v also has its downside. As you’ll see in the exercises, there are 
multiple ways to write the same line in this form. The extra parameter t also makes it harder to 
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solve equations because there is one extra unknown variable. Let’s look at some alternative 
formulas with other advantages. 

If you recall any formula for a line from high school, it is probably y = m · x + b. This formula 
is useful because it gives you a y-coordinate explicitly as a function of the x-coordinate. In this 
form, it’s easy to graph a line: you go through a bunch of x values, compute the corresponding 
y values, and put dots at the resulting (x, y) points. But this formula also has some limitations. 
Most importantly, you can’t represent a vertical line like r(t) = (3, 0) + t · (0, 1). This is the line 
consisting of vectors where x = 3. 

We’ll continue to use the parametric formula r(t) = u + t · v because it avoids this problem, but 
it would be great to have a formula with no extra parameter t that can represent any line. The 
one we use is ax + by = c. As an example, the line we’re looking at in the last few images can 
be written as x + 2y = 8 (figure 7.9). It is the set of (x, y) points in the plane satisfying that 
equation. 

 
Figure 7.9: All (x, y) points on the line satisfy x + 2y = 8. 

The form ax + by = c has no extra parameters and can represent any line. Even a vertical line 
can be written in this form; for instance, x = 3 is the same as 1 · x + 0 · y = 3. Any equation 
representing a line is called a linear equation and this, in particular, is called the standard form 
for a linear equation. We prefer to use it in this chapter because it makes it easy to organize 
our computations. 

7.2.2 Finding the standard form equation for a line 

The formula x + 2y = 8 is the equation for a line containing one of the segments on the example 
asteroid. Next, we’ll look at another one (figure 7.10) and then try to systematize finding the 
standard form for linear equations. Brace yourself for a bit of algebra! I’ll explain each of the 
steps carefully, but it may be a bit dry to read. You’ll have a better time if you follow along on 
your own with a pencil and paper. 
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Figure 7.10: The points (1, 5) and (3, 2) define a second segment of the asteroid. 

The vector (1, 5) − (2, 3) is (-1, 2), which is parallel to the line. Because (2, 3) lies on the line, 
a parametric equation for the line is r(t) = (2, 3) + t · (-1, 2). Knowing that all points on the 
line have the form (2, 3) + t · (-1, 2) for some t, how can we rewrite this condition to be a 
standard form equation? We need to do some algebra and, particularly, get rid of t. Because (x, 
y) = (2, 3) + t · (-1, 2), we really have two equations to start with: 

x=2-t 

y=3+2t 

We can manipulate both of them to get two new equations that have the same value (2t): 

4-2x=2t  

y-3=2t 

Because both of the expressions on the left-hand sides equal 2t, they equal each other: 

4-2x=y-3 

We’ve now gotten rid of t! Finally, pulling the x and y terms to one side, we get the standard 
form equation: 

2x+y=7 

This process isn’t too hard, but we need to be more precise about how to do it if we want to 
convert it to code. Let’s try to solve the general problem: given two points (x1, y1) and (x2, y2), 
what is the equation of the line that passes through them (see figure 7.11)? 
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Figure 7.11: The general problem of finding the equation of the line that passes through two known points 

Using the parametric formula, the points on the line have the following form: 

(x,y)=(x_1,y_1)+t⋅(x_2-x_1,y_2-y_1) 

There are a lot of x and y variables here, but remember that x1, x2, y1, and y2 are all constants 
for the purpose of this discussion. We assume we have two points with known coordinates, and 
we could have called them (a, b) and (c, d) just as easily. The variables are x and y (with no 
subscripts), which stand for coordinates of any point on the line. As before, we can break this 
equation into two pieces: 

x=x_1+t⋅(x_2-x_1) 

y=y_1+t⋅(y_2-y_1) 

We can move x1 and y1 to the left-hand side of their respective equations: 

x-x_1=t⋅(x_2-x_1) 

y-y_1=t⋅(y_2-y_1) 

Our next goal is to make the right-hand side of both equations look the same, so we can set the 
left-hand sides equal to each other. Multiplying both sides of the first equation by (y2−y1) and 
both sides of the second equation by (x2−x1) gives us: 

(y_2-y_1)⋅(x-x_1)=t⋅(x_2-x_1)⋅(y_2-y_1) 

(x_2-x_1)⋅(y-y_1)=t⋅(x_2-x_1)⋅(y_2-y_1) 

Because the right-hand sides are identical, we know that the first and second equations’ left-
hand sides equal each other too. That lets us create a new equation with no t in it: 

(y_2-y_1)⋅(x-x_1)=(x_2-x_1)⋅(y-y_1) 
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Remember, we want an equation of the form ax + by = c, so we need to get x and y on the 
same side and the constants on the other side. The first thing we can do is expand both sides: 

(y_2-y_1)⋅x-(y_2-y_1)⋅x_1=(x_2-x_1)⋅y-(x_2-x_1)⋅y_1 

Then we can move the constants to the left and the variables to the right: 

(y_2-y_1)⋅x-(x_2-x_1)⋅y=(y_2-y_1)⋅x_1-(x_2-x_1)⋅y_1 

Expanding the right side, we see some of the terms cancel out: 

(y_2-y_1)⋅x-(x_2-x_1)⋅y=y_2 x_1-y_1 x_1-x_2 y_1+x_1 y_1=x_1 y_2-x_2 y_1 

We’ve done it! This is the linear equation in standard form ax + by = c, where a = (y2−y1), b = 
-(x2−x1), or in other words, (x1−x2), and c = (x1y2−x2y1). Let’s check this with the previous 
example we did, using the two points (x1, y1) = (2, 3) and (x2, y2) = (1, 5). In this case,  

a=y_2-y_1=5-3=2 

b=〖-(x〗_2-x_1)= -(1-2)=1 

and 

c=x_1 y_2-x_2 y_1=2⋅5-3⋅1=7 

As expected, this means the standard form equation is 2x + y = 7. This formula seems 
trustworthy! As one final application, let’s find the standard form equation for the line defined 
by the laser. It looks like it passes through (2, 2) and (4, 4) as I drew it before (figure 7.12): 

 
Figure 7.12: The laser passes through the points (2, 2) and (4, 4). 

In our asteroid game, we have exact start and end points for the laser line segment, but these 
numbers are nice for an example. Plugging into the formula, we find 
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a=y_2-y_1=4-2=2 

b=〖-(x〗_2-x_1)= -(4-2)= -2 

and 

c=x_1 y_2-x_2 y_1=2⋅4-2⋅4=0 

This means the line is 2y − 2x = 0, which is equivalent to saying x − y = 0 (or simply x = y). 
To decide whether the laser hits the asteroid, we’ll have to find where the line x − y = 0 
intersects the line x + 2y = 8, the line 2x + y = 7, or any of the other lines bounding the 
asteroid.  

7.2.3 Linear equations in matrix notation 

Let’s focus on an intersection we can see: the laser clearly hits the closest edge of the asteroid, 
whose line has equation x + 2y = 8 (figure 7.13). 

 
Figure 7.13: The laser hits the asteroid where the lines x − y = 0 and x + 2y = 8 intersect. 

After quite a bit of build-up, we’ve met our first real system of linear equations. It’s customary 
to write systems of linear equations in a grid like the following, so that the variables x and y line 
up: 

x- y=0 

x+2y=8 
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Thinking back to chapter 5, we can organize these two equations into a single matrix equation. 
One way to do this is to write a linear combination of column vectors, where x and y are 
coefficients: 

 
Another way is to consolidate this even further and write it as a matrix multiplication. The linear 
combination of (1,−1) and (-1,−2) with coefficients x and y is the same as a matrix product: 

 
When we write it this way, the task of solving the system of linear equations looks like solving 
for a vector in a matrix multiplication problem. If we call the 2-by-2 matrix A, the problem 
becomes what vector (x, y) is multiplied by the matrix A to yield (0, 8)? In other words, we 
know that an output of the linear transformation A is (0, 8) and we want to know what input 
yields it (figure 7.14). 

 
Figure 7.14: Framing the problem as finding an input vector that yields the desired output vector 

We’re talking about a bunch of different concepts at once here: linear equations, linear 
combinations, matrices, and linear transformations. The point is that this is a fundamental kind 
of problem in linear algebra; you can look at it from several different perspectives. In the next 
section, we’ll see how they all fit together, but for now, let’s focus on solving the problem at 
hand. 

7.2.4 Solving linear equations with NumPy 

Finding the intersection of x − y = 0 and x + 2y = 8 is the same as finding the vector (x, y) that 
satisfies the matrix multiplication equation: 
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Equation 7.1 

This only a notational difference, but framing the problem in this form allows us to use pre-built 
tools to solve it. Specifically, Python’s NumPy library has a linear algebra module and a function 
that solves this kind of equation. Here’s an example: 

>>> import numpy as np 
>>> matrix = np.array(((1,-1),(1,2))) #<1> 
>>> output = np.array((0,8)) #<2> 
>>> np.linalg.solve(matrix,output) #<3> 
array([2.66666667, 2.66666667]) #<4> 

#1 Packages the matrix as a NumPy array object 
#2 Packages the output vector as a NumPy array (although it needn’t be reshaped to a column vector). 
#3 The numpy.linalg.solve function takes a matrix and an output vector and finds the input vector that produces it. 
#4 The result is (x, y) = (2.66…, 2.66…). 

NumPy has told us that the x- and y-coordinates of the intersection are approximately 2⅔ or 
8/3 each, which looks about right geometrically. Eyeballing the diagram, it looks like both 
coordinates of the intersection point should be between 2 and 3. We can check to see that this 
point lies on both lines by plugging it in to both equations: 

1x-1y=1⋅(2.66666667) -1⋅(2.66666667) =0  

1x+2y=1⋅(2.66666667)+2⋅(2.66666667) =8.00000001 

These results are close enough to (0, 8) and, indeed, make an exact solution. This solution 
vector, roughly (8/3, 8/3) is also the vector that satisfies the matrix equation 7.1. 

 
As figure 7.15 shows, we can picture (8/3, 8/3) as the vector we pass into the linear 
transformation machine defined by the matrix that gives us the desired output vector. 
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Figure 7.15: The vector (8/3, 8/3) when passed to the linear transformation produces the desired output (0, 8). 

We can think of the Python function numpy.linalg.solve as a differently shaped machine that 
takes in matrices and output vectors, and returns the “solution” vectors for the linear equation 
they represent (figure 7.16). 

 
Figure 7.16: The numpy.linalg.solve function takes a matrix and a vector and outputs the solution vector 
to the linear system they represent. 

This is perhaps the most important computational task in linear algebra: starting with a matrix 
A, and a vector w, and finding the vector v such that Av = w. Such a vector gives the solution 
to a system of linear equations represented by A and w. We’re lucky to have a Python function 
that can do this for us so we don’t have to worry about the tedious algebra required to do it by 
hand. We can now use this function to find out when our laser hits asteroids. 

7.2.5 Deciding whether the laser hits an asteroid 

The missing piece of our game was an implementation for the does_intersect method on the 
PolygonModel class. For any instance of this class, which represents a polygon-shaped object 
living in our 2D game world, this method should return True if an input line segment intersects 
any line segment of the polygon.  

For this, we need a few helper functions. First, we need to convert the given line segments from 
pairs of endpoint vectors to linear equations in standard form. At the end of the section, I give 
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you an exercise to implement the function standard_form, which takes two input vectors and 
returns a tuple (a, b, c) where ax + by = c is the line on which the segment lies. 

Next, given two segments, each represented by its pair of endpoint vectors, we want to find out 
where their lines intersect. If u1 and u2 are endpoints of the first segment, and v1 and v2 are 
endpoints of the second, we need to first find the standard form equations and then pass them 
to NumPy to solve. For example, 

def intersection(u1,u2,v1,v2): 
    a1, b1, c1 = standard_form(u1,u2) 
    a2, b2, c2 = standard_form(v1,v2) 
    m = np.array(((a1,b1),(a2,b2))) 
    c = np.array((c1,c2)) 
    return np.linalg.solve(m,c) 

The output is the point where the two lines on which the segments lie intersect. But this point 
might not lie on either of the segments as shown in figure 7.17. 

 
Figure 7.17: One segment connects u1 and u2 and the other connects points v1 and v2. The lines extending the 
segments intersect, but the segments themselves don’t. 

To detect whether the two segments intersect, we need to check that the intersection point of 
their lines lies between the two pairs of endpoints. We can check that using distances. In figure 
7.17, the intersection point is further from point v2 than point v1. Likewise, it’s further from u1 
than u2. This indicates that the point is on neither segment. With four total distance checks, we 
can confirm whether the intersection point of the lines (x, y) is an intersection point of the 
segments as well: 

def do_segments_intersect(s1,s2): 
    u1,u2 = s1 
    v1,v2 = s2 
    d1, d2 = distance(*s1), distance(*s2) #<1> 
    x,y = intersection(u1,u2,v1,v2) #<2> 
    return (distance(u1, (x,y)) <= d1 and #<3> 
            distance(u2, (x,y)) <= d1 and 
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            distance(v1, (x,y)) <= d2 and 
            distance(v2, (x,y)) <= d2) 

#1 Stores the lengths of the first and second segments as d1 and d2, respectively 
#2 Finds the intersection point (x, y) of the lines on which the segments lie 
#3 Does four checks to ensure the intersection point lies between the four endpoints of the line segments, confirming 

the segments intersect 

Finally, we can write the does_intersect method by checking whether 
do_segments_intersect returns True for the input segment and any of the edges of the 
(transformed) polygon: 

class PolygonModel(): 
    ... 
    def does_intersect(self, other_segment): 

        for segment in self.segments(): 
            if do_segments_intersect(other_segment,segment): 
                return True #1 
        return False 

#1 If any of the segments of the polygon intersect other_segment, the method returns True. 

In the exercises that follow, you can confirm that this actually works by building an asteroid 
with known coordinate points and a laser beam with a known start and end point. With 
does_intersect implemented as in the source code, you should be able to rotate the spaceship 
to aim at asteroids and destroy them. 

7.2.6 Identifying unsolvable systems  

Let me leave you with one final admonition: not every system of linear equations in 2D can be 
solved! It’s rare in an application like the asteroid game, but some pairs of linear equations in 
2D don’t have unique solutions or even solutions at all. If we pass NumPy a system of linear 
equations with no solution, we get an exception, so we need to handle this case. 

When a pair of lines in 2D are not parallel, they intersect somewhere. Even the two lines in 
figure 7.18 that are nearly parallel (but not quite) intersect somewhere off in the distance. 
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Figure 7.18: Two lines that are not quite parallel intersect somewhere in the distance. 

Where we run into trouble is when the lines are parallel, meaning the lines never intersect (or 
they’re the same line!) as shown in figure 7.19. 

 
Figure 7.19: A pair of parallel lines that never intersect and a pair of parallel lines that are, in fact, the same line 
despite having different equations. 

In the first case, there are zero intersection points, while in the second, there are infinitely many 
intersection points—every point on the line is an intersection point. Both of these cases are 
problematic computationally because our code demands a single, unique result. If we try to 
solve either of these systems with NumPy, for instance, the system consisting of 2x + y = 6 and 
4x + 2y = 8, we get an exception: 

>>> import numpy as np 
>>> m = np.array(((2,1),(4,2))) 
>>> v = np.array((6,4)) 
>>> np.linalg.solve(m,v) 
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Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
... 
numpy.linalg.linalg.LinAlgError: Singular matrix 

NumPy points to the matrix as the source of the error. The matrix 

 
is called a singular matrix, meaning there is no unique solution to the linear system. A system 
of linear equations is defined by a matrix and a vector, but the matrix on its own is enough to 
tell us whether the lines are parallel and whether the system has a unique solution. For any 
non-zero w we pick, there won’t be a unique v that solves the system. 

 
We’ll philosophize more about singular matrices later, but for now you can see that the rows (2, 
1) and (4, 2) and the columns (2, 4) and (1, 2) are both parallel and, therefore, linearly 
dependent. This is the key clue that tells us the lines are parallel and that the system does not 
have a unique solution. Solvability of linear systems is one of the central concepts in linear 
algebra; it closely relates to the notions of linear independence and dimension. We discuss that 
in the last two sections of this chapter. 

For the purpose of our asteroid game, we can make the simplifying assumption that any parallel 
line segments don’t intersect. Given that we’re building the game with random floats, it’s highly 
unlikely that any two segments are exactly parallel. Even if the laser lined up exactly with the 
edge of an asteroid, this would be a glancing hit and the player doesn’t deserve to have the 
asteroid destroyed. We can modify do_segments_intersect to catch the exception and return 
the default result of False: 

def do_segments_intersect(s1,s2): 
    u1,u2 = s1 
    v1,v2 = s2 
    l1, l2 = distance(*s1), distance(*s2) 
    try: 
        x,y = intersection(u1,u2,v1,v2) 
        return (distance(u1, (x,y)) <= l1 and 
                distance(u2, (x,y)) <= l1 and 
                distance(v1, (x,y)) <= l2 and 
                distance(v2, (x,y)) <= l2) 
    except np.linalg.linalg.LinAlgError: 
        return False 
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7.2.7 Exercises 

 
Exercise 7.3: It’s possible that u + t · v can be a line through the origin. In this case, what can you say about the vectors 
u and v? 
Solution: One possibility is that u = 0 = (0, 0); in which case, the line automatically passes through the origin. The point 
u + 0 · v is the origin in this case, regardless of what v is. Otherwise, if u and v are scalar multiples, say u = s · v, then the 
line passes through the origin as well because u − s · v = 0 is on the line. 
 

 
Exercise 7.4: If v = 0 = (0,0), do points of the form u + t · v represent a line? 
Solution: No, regardless of the value of t, u + t · v = u + t · (0, 0) = u. Every point of this form is equal to u. 
 

 
Exercise 7.5: It turns out that the formula u + t · v is not unique; that is, you can pick different values of u and v to 
represent the same line. What is another line representing (2, 2) + t · (-1, 3)? 
Solution: One possibility is to replace v = (-1, 3) with a scalar multiple of itself such as (2, -6). The points of the form (2, 
2) + t · (-1, 3) agree with the points (2, 2) + s · (2, -6) when t = -2 · s. You can also replace u with any point on the line. 
Because (2, 2) + 1 · (-1, 3) = (1, 5) is on the line, (1, 5) + t · (2, -6) is a valid equation for the same line as well. 
 

 
Exercise 7.6: Does a · x + b · y = c represent a line for any values of a, b, and c? 
Solution: No, if both a and b are zero, the equation does not describe a line. In that case, the formula would be 0 · x + 0 · 
y = c. If c = 0, this would always be true, and if c ≠ 0, it would never be true. Either way, it establishes no relationship 
between x and y and, therefore, it would not describe a line. 
 

 
Exercise 7.7: Find another equation for the line 2x + y = 3, showing that the choices of a, b, and c are not unique. 
Solution: One example of another equation is 6x + 3y = 9. In fact, multiplying both sides of the equation by the same 
non-zero number gives you a different equation for the same line. 
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Exercise 7.8: The equation ax + by = c is equivalent to an equation involving a dot product of two 2D vectors: (a, b) · (x, y) 
= c. You could, therefore, say that a line is a set of vectors whose dot product with a given vector is constant. What is 
the geometric interpretation of this statement? 
Solution: See the discussion in section 7.3.1. 
 

 
Exercise 7.9: Confirm that the vectors (0, 7) and (3.5, 0) both satisfy the equation 2x + y = 7. 
Solution: 2 · 0 + 7 = 7 and 2 · (3.5) + 0 = 7. 
 

 
Exercise 7.10: Draw a graph for (3, 0) + t (0, 1) and convert it to the standard form using the formula. 
Solution: (3, 0) + t (0, 1) yields a vertical line, where x = 3: 

 
The formula x = 3 is already the equation of a line in standard form, but we can confirm this with the formulas. The first 
point on our line is already given: (x1, y1) = (3, 0). A second point on the line is (3, 0) + (0, 1) = (3, 1) = (x2, y2). We have a 
= y2 − y1 = 1, b = x1 − x2 = 0, and c = x1y2 − x2y1 = 3 · 1 − 1 · 0 = 3. This gives us 1 · x + 0 · y = 3 or simply x = 3. 
 

 
Exercise 7.11: Write a Python function standard_form that takes two vectors v1 and v2 and finds the line ax + by = c 
passing through both of them. Specifically, it should output the tuple of constants (a, b, c). 
Solution: All you need to do is translate the formulas you wrote in Python: 
def standard_form(v1, v2): 

    x1, y1 = v1 
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    x2, y2 = v2 

    a = y2 - y1 

    b = x1 - x2 

    c = x1 * y2 - y1 * x2 

    return a,b,c 

 

 
Mini-project 7.12: For each of the four distance checks in do_segments_intersect, find a pair of line segments 
that fail one of the checks but pass the other three checks. 
Solution: To make it easier to run experiments, we can create a modified version of do_segments_intersect that 
returns a list of the True/False values returned by each of the four checks: 
def segment_checks(s1,s2): 

    u1,u2 = s1 

    v1,v2 = s2 

    l1, l2 = distance(*s1), distance(*s2) 

    x,y = intersection(u1,u2,v1,v2) 

    return [ 

        distance(u1, (x,y)) <= l1, 

        distance(u2, (x,y)) <= l1, 

        distance(v1, (x,y)) <= l2, 

        distance(v2, (x,y)) <= l2 

    ] 

In general, these checks fail when one endpoint of a segment is closer to the other endpoint than to the intersection 
point.  
Here are some other solutions I found, using segments on the lines y = 0 and x = 0, which intersect at the origin. Each 
of these fails exactly one of the four checks. If in doubt, draw them yourself to see what’s going on. 
>>> segment_checks(((-3,0),(-1,0)),((0,-1),(0,1))) 

[False, True, True, True] 

>>> segment_checks(((1,0),(3,0)),((0,-1),(0,1))) 

[True, False, True, True] 

>>> segment_checks(((-1,0),(1,0)),((0,-3),(0,-1))) 

[True, True, False, True] 

>>> segment_checks(((-1,0),(1,0)),((0,1),(0,3))) 

[True, True, True, False] 
 

 
Exercise 7.13: For the example laser line and asteroid, confirm the does_intersect function returns True. (Hint: 
use grid lines to find the vertices of the asteroid and build a PolygonModel object representing it.) 
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The laser hits the asteroid. 
Solution: In counterclockwise order, starting with the topmost point, the vertices are (2, 7), (1, 5), (2, 3), (4, 2), (6, 2), (7, 
4), (6, 6), and (4, 6). We can assume the endpoints of the laser beam are (1, 1) and (7, 7): 
>>> from asteroids import PolygonModel 

>>> asteroid = PolygonModel([(2,7), (1,5), (2,3), (4,2), (6,2), (7,4), (6,6), (4,6)]) 

>>> asteroid.does_intersect([(0,0),(7,7)]) 

True 
This confirms the laser hits the asteroid! By contrast, a shot directly up the y-axis from (0, 0) to (0, 7) does not hit: 
>>> asteroid.does_intersect([(0,0),(0,7)]) 

False 
 

 
Exercise 7.14: Write a does_collide(other_polygon) method to decide whether the current PolygonModel 
object collides with another other_polygon by checking whether any of the segments that define the two are 
intersecting. This could help us decide whether an asteroid has hit the ship or another asteroid. 
Solution: First, it’s convenient to add a segments() method to PolygonModel to avoid duplication of the work of 
returning the (transformed) line segments that constitute the polygon. Then, we can check every segment of the other 
polygon to see if it returns true for does_intersect with the current one: 

class PolygonModel(): 

    ... 

    def segments(self): 

        point_count = len(self.points) 

        points = self.transformed() 

        return [(points[i], points[(i+1)%point_count]) 

                for i in range(0,point_count)] 

 

    def does_collide(self, other_poly): 

        for other_segment in other_poly.segments(): 

            if self.does_intersect(other_segment): 

                return True 

        return False 
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We can test this by building some squares that should and shouldn’t overlap, and seeing whether the does_collide 
method correctly detects which is which. Indeed, it does: 
>>> square1 = PolygonModel([(0,0), (3,0), (3,3), (0,3)]) 

>>> square2 = PolygonModel([(1,1), (4,1), (4,4), (1,4)]) 

>>> square1.does_collide(square2) 

True 

>>> square3 = PolygonModel([(-3,-3),(-2,-3),(-2,-2),(-3,-2)]) 

>>> square1.does_collide(square3) 

False 
 

 
Mini-project 7.15: We can’t pick a vector w so that the following system has a unique solution v. 

 
Find a vector w such that there are infinitely many solutions to the system; that is, infinitely many values of v that 
satisfy the equation. 
Solution: If w = (0, 0), for example, the two lines represented by the system are identical. (Graph them if you are 
skeptical!) The solutions have the form v = (a, -2a) for any real number a. Here are some of the infinite possibilities for v 
when w = (0, 0): 

 
 

7.3 Generalizing linear equations to higher dimensions 
Now that we’ve built a functional (albeit minimal) game, let’s broaden our perspective. We can 
represent a wide variety of problems as systems of linear equations, not just arcade games. 
Linear equations in the wild often have more than two “unknown” variables, x and y. Such 
equations describe collections of points in more than two dimensions. In more than three 
dimensions, it’s hard to picture much of anything, but the 3D case can be a useful mental model. 
Planes in 3D end up being the analogy of lines in 2D, and they are also represented by linear 
equations. 

7.3.1 Representing planes in 3D 

To see why lines and planes are analogous, it’s useful to think of lines in terms of dot products. 
As you saw in a previous exercise, or may have noticed yourself, the equation ax + by = c is 
the set of points (x, y) in the 2D plane where the dot product with a fixed vector (a, b) is equal 
to a fixed number c. That is, the equation ax + by = c is equivalent to the equation (a, b) · (x, 
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y) = c. In case you didn’t figure out how to interpret this geometrically in the exercise, let’s go 
through it here. 

If we have a point and a (non-zero) vector in 2D, there’s a unique line that is perpendicular to 
the vector and also passes through the point as shown in figure 7.20. 

 
Figure 7.20: A unique line passing through a given point and perpendicular to a given vector. 

If we call the given point (x0, y0) and the given vector (a, b), we can write a criterion for a point 
(x, y) to lie on the line. Specifically, if (x, y) lies on the line, then (x−x0, y−y0) is parallel to the 
line and perpendicular to (a, b) as shown in figure 7.21. 

 
Figure 7.21: The vector (x−x0, y−y0) is parallel to the line and, therefore, perpendicular to (a, b). 

Because two perpendicular vectors have a zero dot product, that’s equivalent to the algebraic 
statement: 
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(a, b) · (x−x0, y−y0) = 0 

That dot product expands to 

a(x−x0) + b(y−y0) = 0 

or 

ax + by = ax0 + by0 

The quantity on the right-hand side of this equation is a constant, so we can rename it c, giving 
us the general form equation for a line: ax + by = c. This is a handy geometric interpretation of 
the formula ax + by = c, and one that we can generalize to 3D.  

Given a point and a vector in 3D, there is a unique plane perpendicular to the vector and passing 
through that point. If the vector is (a, b, c) and the point is (x0, y0, z0), we can conclude that if 
a vector (x, y, z) lies in the plane, then (x−x0, y−y0, z−z0) is perpendicular to (a, b, c). Figure 
7.22 shows this logic. 

 
Figure 7.22: A plane parallel to the vector (a, b, c) passes through the point (x0, y0, z0). 

Every point on the plane gives us such a perpendicular vector to (a, b, c), and every vector 
perpendicular to (a, b, c) leads us to a point in the plane. We can express this perpendicularity 
as a dot product of the two vectors, so the equation satisfied by every point (x, y, z) in the plane 
is 

(a, b, c) · (x−x0, y−y0, z−z0) = 0 

This expands to 

ax + by + cz = ax0 + by0 + cz0 

And because the right-hand side of the equation is a constant, we can conclude that every plane 
in 3D has an equation of the form ax + by + cz = d. In 3D, the computational problem is to 
decide where the planes intersect or which values of (x, y, z) simultaneously satisfy multiple 
linear equations like this. 
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7.3.2 Solving linear equations in 3D 

A pair of non-parallel lines in the plane intersects at exactly one point. Is that single intersection 
point true for planes as well? If we draw a pair of intersecting planes, we can see that it’s 
possible for non-parallel planes to intersect at many points. In fact, figure 7.23 shows there is 
a whole line, consisting of an infinite number of points where two non-parallel planes intersect. 

 
Figure 7.23: Two non-parallel planes intersect along a line. 

If you add a third plane that is not parallel to this intersection line, you can find a unique 
intersection point. Figure 7.24 shows that each pair among the three planes intersects along a 
line and the lines share a single point. 
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Figure 7.24: Two non-parallel planes intersect along a line. 

Finding this point algebraically requires finding a common solution to three linear equations in 
three variables, each representing one of the planes and having the form ax + by + cz = d. 
Such a system of three linear equations would have the form: 

a_1 x+b_1 y+c_1 z=d_1 

a_2 x+b_2 y+c_2 z=d_2 

a_3 x+b_3 y+c_3 z=d_3 

Each plane is determined by four numbers: ai, bi, ci, and di, where i = 1, 2, or 3 and is the index 
of the plane we’re looking at. Subscripts like this are useful for systems of linear equations 
where there can be a lot of variables that need to be named. These twelve numbers in total are 
enough to find the point (x, y, z) where the planes intersect, if there is one. To solve the system, 
we can convert the system into a matrix equation: 

 
Let’s try an example. Say our three planes are given by the following equations: 

x + y − z = -1 
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2y − z = 3 

x + z = 2 

You can see how to plot these planes in Matplotlib in the source code for this book. Figure 7.25 
shows the result. 

 
Figure 7.25: Three planes plotted in Matplotlib. 

It’s not easy to see, but somewhere in there, the three planes intersect. To find that intersection 
point, we need the values of x, y, and z that simultaneously satisfy all three linear equations. 
Once again, we can convert the system to matrix form and use NumPy to solve it. The matrix 
equation equivalent to this linear system is 

 
Converting the matrix and vector to NumPy arrays in Python, we can quickly find the solution 
vector: 

>>> matrix = np.array(((1,1,-1),(0,2,-1),(1,0,1))) 
>>> vector = np.array((-1,3,2)) 
>>> np.linalg.solve(matrix,vector) 
array([-1., 3., 3.]) 

This tells us that (-1, 3, 3) is the (x, y, z) point where all three planes intersect and the point 
that simultaneously satisfies all three linear equations. 

While this result was easy to compute with NumPy, you can see it’s already a bit harder to 
visualize systems of linear equations in 3D. Beyond 3D, it’s difficult (if not impossible) to 
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visualize linear systems, but solving them is mechanically the same. The analogy to a line or a 
plane in any number of dimensions is called a hyperplane, and the problem boils down to finding 
the points where multiple hyperplanes intersect. 

7.3.3 Studying hyperplanes algebraically 

To be precise, a hyperplane in n dimensions is a solution to a linear equation in n unknown 
variables. A line is a 1D hyperplane living in 2D, and a plane is a 2D hyperplane living in 3D. As 
you might guess, a linear equation in standard form in 4D has the following form: 

aw + bx + cy + dz = e 

The set of solutions (w, x, y, z) form a region that is a 3D hyperplane living in 4D space. I need 
to be careful when I use the adjective 3D because it isn’t necessarily a 3D vector subspace of 
ℝ4. This is analogous to the 2D case: the lines passing through the origin in 2D are vector 
subspaces of ℝ2, but other lines are not. Vector space or not, the 3D hyperplane is 3D in the 
sense that there are three linearly independent directions you could travel in the solution set, 
like there are two linearly independent directions you can travel on any plane. I’ve included a 
mini-project at the end of this section to help you check your understanding of this. 

When we write linear equations in even higher numbers of dimensions, we’re in danger of 
running out of letters to represent coordinates and coefficients. To solve this, we’ll use letters 
with subscript indices. For instance, in 4D, we could write a linear equation in standard form as: 

a1x1 + a2x2 + a3x3 + a4x4 = b 

Here, the coefficients are a1, a2, a3, and a4, and the 4D vector has the coordinates (x1, x2, x3, 
x4). We could just as easily write a linear equation in 10-dimensions: 

a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8 + a9x9 + a10x10 = b 

When the pattern of terms we’re summing is clear, we sometimes use an ellipsis (...) to save 
space. You may see equations like the previous one written a1x1 + a2x2 + ... + a10x10 = b. Another 
compact notation you’ll see involves the summation symbol (Σ), which is the Greek letter Sigma. 
If I want to write the sum of terms of the form aixi with the index i ranging from i = 1 to i = 10, 
and I want to state that the sum is equal to some other number b, I can use the mathematical 
shorthand: 

 
This equation means the same thing as the earlier one: it is merely a more concise way of 
writing it. Whatever number of dimensions n we’re working in, the standard form of a linear 
equation has the same shape: 

a1x1 + a2x2 + … + anxn = b 
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To represent a system of m linear equations in n dimensions, we need even more indices. Our 
array of constants on the left-hand side of the equals sign can be denoted aij, where the subscript 
i indicates which equation we’re talking about and the subscript j indicates which coordinate (xj) 
the constant is multiplied by. For example, 

a11x1 + a12x2 + … + a1nxn = b1 

a21x1 + a22x2 + … + a2nxn = b2 

… 

am1x1 + am2x2 + … + amnxn = bm 

You can see that I also used the ellipsis to skip equations three through m-1 in the middle. 
There are m equations and n constants in each equation, so there are mn constants of the form 
aij in total. On the right-hand side, there are m constants in total, one per equation: b1, b2, …, 
bm. 

Regardless of the number of dimensions (the same as the number of unknown variables) and 
the number of equations, we can represent such a system as a linear equation. The previous 
system with n unknowns and m equations can be rewritten as shown in figure 7.26. 

 
Figure 7.26: A system of m linear equations with n unknowns written in matrix form. 

7.3.4 Counting dimensions, equations, and solutions 

We saw in both 2D and 3D that it’s possible to write linear equations that don’t have a solution, 
or at least not a unique one. How will we know if a system of m equations in n unknowns is 
solvable? In other words, how will we know if m hyperplanes in n-dimensions have a unique 
intersection point? We’ll discuss this in detail in the last section of this chapter, but there’s one 
important conclusion we can draw now. 

In 2D, a pair of lines can intersect at a single point. They won’t always (for instance, if the lines 
are parallel), but they can. The algebraic equivalent to this statement is that a system of two 
linear equations in two variables can have a unique solution.  

In 3D, three planes can intersect at a single point. Likewise, this is not always the case, but 
three is the minimum number of planes (or linear equations) required to specify a point in 3D. 
With only two planes, you have at least a 1D space of possible solutions, which is the line of 
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intersection. Algebraically, this means you need two linear equations to get a unique solution in 
2D and three linear equations to get a unique solution in 3D. In general, you need n linear 
equations to be able to get a unique solution in n-dimensions. 

Here’s an example when working in 4D with the coordinates (x1, x2, x3, x4), which can seem 
overly simple but is useful because of how concrete it is. Let’s take our first linear equation to 
be x4 = 0. The solutions to this linear equation form a 3D hyperplane, consisting of vectors of 
the form (x1, x2, x3, 0). This is clearly a 3D space of solutions, and it turns out to be a vector 
subspace of ℝ4 with basis (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0). 

A second linear equation could be x2 = 0. The solutions of this equation on its own are also a 
3D hyperplane. The intersection of these two 3D hyperplanes is a 2D space, consisting of vectors 
of the form (x1, 0, x3, 0), which satisfy both equations. If we could picture such a thing, we 
would see this as a 2D plane living in 4D space. Specifically, it is the plane spanned by (1, 0, 0, 
0) and (0, 0, 1, 0). 

Adding one more linear equation, x1 = 0, which defines its own hyperplane, the solutions to all 
three equations are now a 1D space. The vectors in this 1D space lie on a line in 4D, and have 
the form (0, 0, x3, 0). This line is exactly the x3-axis, which is a 1D subspace of ℝ4. 

Finally, if we impose a fourth linear equation, x3 = 0, the only possible solution is (0, 0, 0, 0), a 
zero-dimensional vector space. The statements x4 = 0, x2 = 0, x1 = 0, and x3 = 0 are, in fact, 
linear equations, but these are so simple they describe the solution exactly: (x1, x2, x3, x4) = 
(0, 0, 0, 0). Each time we add an equation, we reduced the dimension of the solution space by 
one, until we got a zero-dimensional space consisting of the single point (0, 0, 0, 0). 

Had we chosen different equations, each step would not have been as clear; we would have to 
test whether each successive hyperplane truly reduces the dimension of the solution space by 
one. For instance, if we started with 

x1 = 0 

and 

x2 = 0 

we would have reduced the solution set to a 2D space, but then adding another equation to the 
mix 

x1 + x2 = 0 

there is no effect on the solution space. Because x1 and x2 are already constrained to be zero, 
the equation x1 + x2 = 0 is automatically satisfied. This third equation, therefore, adds no more 
specificity to the solution set. 

In the first case, four dimensions with three linear equations to satisfy left us with a 4 − 3 = 1 
dimensional solution space. But in the second case, three equations described a less specific 2D 
solution space. If you have n dimensions (n unknown variables) and n linear equations, it’s 
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possible there’s a unique solution—a zero-dimensional solution space—but this is not always the 
case. More generally, if you’re working in n dimensions, the lowest dimensional solution space 
you can get with m linear equations is n − m. In that case, we call the system of linear equations 
independent. 

Every basis vector in a space gives us a new independent direction we can move in the space. 
Independent directions in a space are sometimes called degrees of freedom: the z direction, for 
instance, “freed” us from the plane into larger 3D space. By contrast, every independent linear 
equation we introduce is a constraint: it removes a degree of freedom and restricts the space 
of solutions to have a smaller number of dimensions. When the number of independent degrees 
of freedom (dimensions) equals the number of independent constraints (linear equations), there 
are no longer any degrees of freedom, and we are left with a unique point.  

This is a major philosophical point in linear algebra, and one you can explore more in some mini-
projects that follow. In the final section of this chapter, we’ll connect the concepts of independent 
equations and (linearly) independent vectors. 

7.3.5 Exercises 

 
Exercise 7.16: What’s the equation for a line that passes through (5, 4) and that is perpendicular to (-3, 3)? 
Solution: Here’s the set up: 

 
For every point (x, y) on the line, the vector (x−5, y−4) is parallel to the line and, therefore, perpendicular to (-3, 3). That 
means that the dot product (x−5, y−4) · (-3, 3) is zero for any (Ix, y) on the line. This equation expands to -3x + 15 + 3y − 
12 = 0, which rearranges to give -3x + 3y = -3. We can divide both sides by -3 to get a simpler, equivalent equation: x − 
y = 1. 
 

 
Mini-project 7.17: Consider a system of two linear equations in 4D: 
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x1 + 2x2 + 2x3 + x4 = 0 
x1 - x4 = 0 
Explain algebraically (rather than geometrically) why the solutions form a vector subspace of 4D. 
Solution: We can show that if (a1, a2, a3, a4) and (b1, b2, b3, b4) are two solutions, then a linear combination of those is a 
solution as well. That would imply that the solution set contains all linear combinations of its vectors, making it a vector 
subspace. 
Let’s start with the assumption that (a1, a2, a3, a4) and (b1, b2, b3, b4) are solutions to both linear equations, which 
explicitly means:  
a1 + 2a2 + 2a3 + a4 = 0 
b1 + 2b2 + 2b3 + b4 = 0 
a1 − a4 = 0 
b1 − b4 = 0 
Picking scalars c and d, the linear combination c(a1, a2, a3, a4) + d(b1, b2, b3, b4) is equal to (ca1 + db1, ca2 + db2, ca3 + 
db3, ca4 + db4). Is this a solution to the two equations? We can find out by plugging the four coordinates in for x1, x2, x3, 
and x4. In the first equation, 
x1 + 2x2 + 2x3 + x4 
becomes 
(ca1 + db1) + 2(ca2 + db2) + 2(ca3 + db3) + (ca4 + db4) 
That expands to give us  
ca1 + db1 + 2ca2 + 2db2 + 2ca3 + 2db3 + ca4 + db4 
which rearranges to  
c(a1 + 2a2+2a3 + a4) + d(b1 + 2b2 + 2b3 + b4) 
Because a1 + 2a2 + 2a3 + a4 and b1 + 2b2 + 2b3 + b4 are both zero, this expression is zero: 
c(a1 + 2a2 + 2a3 + a4) + d(b1 + 2b2 + 2b3 + b4) = c · 0 + d · 0 = 0 
That means the linear combination is a solution to the first equation. Similarly, plugging the linear combination into the 
second equation, we see it’s a solution to that equation as well: 
(ca1 + db1) − (ca4 + db4) = c(a1 − a4) + d(b1 − b4) = c · 0 + d · 0 = 0 
Any linear combination of any two solutions is also a solution, so the solution set contains all of its linear combinations. 
That means the solution set is a vector subspace of 4D. 
 

 
Exercise 7.18: What is the standard form equation for a plane that passes through the point (1, 1, 1) and is 
perpendicular to the vector (1, 1, 1)? 
Solution: For any point (x, y, z) in the plane, the vector (x−1, y−1, z−1) is perpendicular to (1, 1, 1). That means that the 
dot product (x−1, y−1, z−1) · (1, 1, 1) is zero for any x, y, and z values giving a point in the plane. This expands to give us 
(x − 1) + (y − 1) + (z − 1) = 0 or x + y + z = 3, the standard form equation for the plane. 
 

 
Mini-project 7.19: Write a Python function that takes three 3D points as inputs and returns the standard form equation 
of the plane that they lie in. For instance, if the standard form equation is ax + by + cz = d, the function could return the 
tuple (a, b, c, d).  
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Hint: Differences of any pairs of the three vectors are parallel to the plane, so cross products of the differences are 
perpendicular. 
Solution: If the points given are p1, p2, and p3, then the vector differences like p3 − p1 and p2 − p1 are parallel to the 
plane. The cross product (p2 − p1) × (p3 − p1) is then perpendicular to the plane. (All is well as long as the points p1, p2, 
and p3 form a triangle, so the differences are not parallel.) With a point in the plane (for instance, p1) and a 
perpendicular vector, we can repeat the process of finding the standard form of the solution as in the previous two 
exercises: 
from vectors import * 

 

def plane_equation(p1,p2,p3): 

    parallel1 = subtract(p2,p1) 

    parallel2 = subtract(p3,p1) 

    a,b,c = cross(parallel1, parallel2) 

    d = dot((a,b,c), p1) 

    return a,b,c,d 

For example, these are three points from the plane x + y + z = 3 from the preceding exercise: 
>>> plane_equation((1,1,1), (3,0,0), (0,3,0)) 

(3, 3, 3, 9) 

The result is (3, 3, 3, 9), meaning 3x + 3y + 3z = 9, which is equivalent to x + y + z = 3. That means we got it right! 
 

 
Exercise 7.20: How many total constants aij are in the following matrix equation? How many equations are there? How 

many unknowns? Write the full matrix equation (no dots) and the full system of linear equations (no dots). 

 
An abbreviated system of linear equations in matrix form 
Solution: To be clear, we can write out the full matrix equation first: 
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The unabbreviated version of the matrix equation 

In total, there are 5 · 7 = 35 entries in this matrix and 35 aij constants on the left-hand side of the equations in the 

linear system. There are 7 unknown variables: x1, x2, …, x7 and 5 equations (one per row of the matrix). You can get the 
full linear system by carrying out the matrix multiplication: 

 
The full system of linear equations represented by this matrix equation. 
You can see why we avoid this tedious writing with abbreviations! 
 

 
Exercise 7.21: Write the following linear equation without summation shorthand. Geometrically, what does the set of 
solutions look like? 

 
Solution: The left-hand side of this equation is a sum of terms of the form xi for i, ranging from 1 to 3. That gives us x1 + 

x2 + x3 = 1. This is the standard form of a linear equation in three variables, so its solutions form a plane in 3D space. 
 

 
Exercise 7.22: Sketch three planes, none of which are parallel and do not have a single point of intersection. (Better yet, 
find their equations and graph them!) 
Solution: Here are three planes: z + y = 0, z − y = 0, and z = 3 and the graph: 
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Three non-parallel planes that don’t share an intersection point. 
I’ve drawn the intersections of the three pairs of planes, which are parallel lines. Because these lines never meet, there 
is no single point of intersection for all three planes. This is like the example you saw in chapter 6: three vectors can be 
linearly dependent even when no pair among them is parallel. 
 

 
Exercise 7.23: Suppose we have m linear equations and n unknown variables. What do the following values of m and n 
say about whether there is a unique solution? 
a. m = 2, n = 2 
b. m = 2, n = 7 
c. m = 5, n = 5 
d. m = 3, n = 2 
Solution: 
a. With two linear equations and two unknowns, there can be a unique solution. The two equations represent lines in 

the plane, and they will intersect at a unique point unless they are parallel. 
b. With two linear equations and seven unknowns, there cannot be a unique solution. Assuming the 6D hyperplanes 

defined by these equations are not parallel, there will be a 5D space of solutions. 
c. With five linear equations and five unknowns, there can be a unique solution, as long as the equations are 

independent. 
d. With three linear equations and two unknowns, there can be a unique solution, but it requires some luck. This 

would mean that the third line happens to pass through the intersection point of the first two lines, which is 
unlikely but possible; for example, 
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Three lines in the plane that happen to intersect at a point 
 

 
Exercise 7.24: Find 3 planes whose intersection is a single point, 3 planes whose intersection is a line, and 3 planes 
whose intersection is a plane. 
Solution: The planes z − y = 0, z + y = 0, and z + x = 0 intersect at the single point (0, 0, 0). Most randomly selected 
planes will intersect at a unique point like this. 

 
Three planes intersecting at a single point. 
The planes z − y = 0, z + y = 0, and z = 0 intersect on a line, specifically the x-axis. If you play with these equations, 
you’ll find both y and z are constrained to be zero, but x doesn’t even appear, so it has no constraints. Any vector (x, 0, 
0) on the x-axis is, therefore, a solution. 
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Three planes whose intersection points form a line. 
Finally, if all three equations represent the same plane, then that whole plane is a set of solutions. For instance, z − y = 
0, 2z − 2y = 0, and 3z − 3y = 0 all represent the same plane. 

 
Three identical planes overlaid; their set of solutions is the whole plane. 
 

 
Exercise 7.25: Without using Python, what is the solution of the system of linear equations in 5D? x5 = 3, x2 = 1, x4 = -1, 
x1 = 0, and x1 + x2 + x3 = -2? Confirm the answer with NumPy. 
Solution: Because four of these linear equations specify the value of a coordinate, we know the solution has the form 
(0,1, x3, -1,3). We need to do some algebra using the final equation to find out the value of x3. Because x1 + x2 + x3 = -2, 
we know 0 + 1 + x3 = -2, and x3 must be -3. The unique solution point is, therefore, (0, 1, -3, -1, 3). Converting this 
system to matrix form, we can solve it with NumPy to confirm we got it right: 
>>> matrix = np.array(((0,0,0,0,1),(0,1,0,0,0),(0,0,0,1,0),(1,0,0,0,0),(1,1,1,0,0))) 

>>> vector = np.array((3,1,-1,0,-2)) 
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>>> np.linalg.solve(matrix,vector) 

array([ 0., 1., -3., -1., 3.]) 

 

 
Mini-project 7.26: In any number of dimensions, there is an identity matrix that acts as the identity map. That is, when 
you multiply the n-dimensional identity matrix I by any vector v, you get the same vector v as a result; therefore, Iv = v. 
This means that Iv = w is an easy system of linear equations to solve: one possible answer for v is v = w. The idea of this 
mini-project is that you can start with a system of linear equations, Av = w, and multiply both sides by another matrix B 
such that (BA) = I. If that is the case, then you have (BA)v = Bw and Iv = Bw or v = Bw. In other words, if you have a 
system Av = w, and a suitable matrix B, then Bw is the solution to your system. This matrix B is called the inverse matrix 
of A. 
Let’s look again at the system of equations we solved in section 7.3.2: 

 
Use the NumPy function numpy.linalg.inv(matrix), which returns the inverse of the matrix it is given to find the 
inverse of the matrix on the left-hand side of the equation. Then, multiply both sides by this matrix to find the solution to 
the linear system. Compare your results with the results we got from NumPy’s solver. 
Hint: You might also want to use NumPy’s built-in matrix multiplication routine, numpy.matmul, to make 
computations simpler. 
Solution: First, we can compute the inverse of the matrix using NumPy: 
>>> matrix = np.array(((1,1,-1),(0,2,-1),(1,0,1))) 

>>> vector = np.array((-1,3,2)) 

>>> inverse = np.linalg.inv(matrix) 

>>> inverse 

array([[ 0.66666667, -0.33333333,  0.33333333], 

       [-0.33333333,  0.66666667,  0.33333333], 

       [-0.66666667,  0.33333333,  0.66666667]]) 
The product of the inverse matrix with the original matrix gives us the identity matrix, having 1’s on the diagonal and 0’s 
elsewhere, albeit with some numerical error: 
>>> np.matmul(inverse,matrix) 

array([[ 1.00000000e+00,  1.11022302e-16, -1.11022302e-16], 

       [ 0.00000000e+00,  1.00000000e+00,  0.00000000e+00], 

       [ 0.00000000e+00,  0.00000000e+00,  1.00000000e+00]]) 
The trick is to multiply both sides of the matrix equation by this inverse matrix. Here I’ve rounded the values in the 
inverse matrix for the sake of readability. We already know that the first product on the left is a matrix and its inverse, 
so we can simplify accordingly: 
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Multiplying both sides of the system by the inverse matrix and simplifying 

This gives us an explicit formula for the solution (x, y, z); all we need to do is to carry out the matrix multiplication. It 
turns out numpy.matmul also works for matrix vector multiplication: 

>>> np.matmul(inverse, vector) 

array([-1., 3., 3.]) 
This is the same as the solution we got earlier from the solver. 
 

7.4 Changing basis by solving linear equations 
The notion of linear independence of vectors is clearly related to the notion of independence of 
linear equations. The connection comes from the fact that solving a system of linear equations 
is the equivalent of re-writing vectors in a different basis. Let’s explore what this means in 2D. 
When we write coordinates for a vector like (4, 3), we are implicitly writing the vector as a linear 
combination of the standard basis vectors: 

(4, 3) = 4e1 + 3e2 

In the last chapter, you learned that the standard basis consisting of e1 = (1, 0) and e2 = (0, 
1) is not the only basis available. For instance, a pair of vectors like u1 = (1, 1) and u2 = (-1, 
1) form a basis for ℝ2. As any 2D vector can be written as a linear combination of e1 and e2, so 
can any 2D vector be written as a linear combination of this u1 and u2. For some c and d, we 
can make the following equation true, but it’s not immediately obvious what the values of c and 
d are: 

c · (1, 1) + d · (-1, 1) = (4, 2) 

Figure 7.27 shows a visual representation of this. 
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Figure 7.27: Writing (4,2) as a linear combination of u1 = (1,1) and u2 = (-1,1) 

As a linear combination, this equation is equivalent to a matrix equation, namely: 

 
This, too, is a system of linear equations! In this case, the unknown vector is written (c, d) 
rather than (x, y), and the linear equations hidden in the matrix equation are c − d = 4 and c 
+ d = 2. There is a 2D space of vectors (c, d) that define different linear combinations of u1 and 
u2, but only one simultaneously satisfies these two equations. 

Any choice of the pair (c, d) defines a different linear combination. As an example, let’s look at 
an arbitrary value of (c, d), say (c, d) = (3, 1). The vector (3, 1) doesn’t live in the same vector 
space as u1 and u2; it lives in a vector space of (c, d) pairs, each of which describe a different 
linear combination of u1 and u2. The point (c, d) = (3, 1) describes a specific linear combination 
in our original 2D space: 3u1 + 1u2 gets us to the point (x, y) = (2, 4) (figure 7.28). 

 
Figure 7.28: There is a 2D space of values (c, d), where (c, d) = (3, 1) and yields the linear combination 3u1 + 1u2 
= (2, 4). 
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Recall that we’re trying to make (4, 2) as a linear combination of u1 and u2, so this isn’t the 
linear combination we were looking for. For cu1 + du2 to equal (4, 2), we need to satisfy c − d 
= 4 and c + d = 2 as we saw previously.  

Let’s draw the system of linear equations in the c, d plane. Visually, we can tell that (3, -1) is a 
point that satisfies both c + d = 2 and c − d = 4. This gives us the pair of scalars to use in a 
linear combination to make (4, 2) out of u1 and u2 as shown in figure 7.29. 

 
Figure 7.29: The point (c, d) = (3, -1) satisfies both c + d = 2 and c − d = 4. Therefore, it describes the linear 
combination we were looking for. 

Now we can write (4, 2) as a linear combination of two different pairs of basis vectors: (4, 2) = 
4e1 + 2e2 and (4, 2) = 3u1 − 1u2. Remember, the coordinates (4, 2) are exactly the scalars in 
the linear combination 4e1 + 2e2. If we had drawn our axes differently, u1 and u2 could just as 
well have been our standard basis; our vector would be 3u1 − u2 and we would say its 
coordinates were (3, 1). To emphasize that coordinates are determined by our choice of basis, 
we can say that the vector has coordinates (4, 2) with respect to the standard basis, but it has 
coordinates (3, -1) with respect to the basis consisting of u1 and u2. 

Finding the coordinates of a vector with respect to a different basis is an example of a 
computational problem that is really a system of linear equations in disguise. It’s an important 
example because every system of linear equations can be thought of in this way. Let’s try 
another example, this time in 3D, to see what I mean. 

7.4.1 Solving a 3D example 

Let’s start by writing an example of a system of linear equations in 3D and then we’ll work on 
interpreting it. Instead of a 2-by-2 matrix and a 2D vector, we can start with a 3-by-3 matrix 
and a 3D vector: 
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The unknown here is a 3D vector; we need to find three numbers to identify it. Doing the matrix 
multiplication, we can break this up into three equations: 

1⋅x-1⋅y+0⋅z=1 

0⋅x-1⋅y-1⋅z=3 

1⋅x+0⋅y+2⋅z= -7 

This is a system of three linear equations with three unknowns, and ax + by + cz = d is the 
standard form for a linear equation in 3D. In the next section, we look at the geometric 
interpretation for 3D linear equations. (It turns out they represent planes in 3D as opposed to 
lines in 2D.) 

For now, let’s look at this system as a linear combination with coefficients to be determined. 
The previous matrix equation is equivalent to the following: 

 
Solving this equation is equivalent to asking the question: What linear combination of (1, 0, 1), 
(-1, -1, 0), and (0, -1, 2) yields the vector (1, 3, -7)? This is harder to picture than the 2D 
example, and it is harder to compute the answer by hand as well. Fortunately, we know NumPy 
can handle systems of linear equations in three unknowns, so we simply pass a 3-by-3 matrix 
and 3D vector as inputs to the solver like this: 

>>> import numpy as np 
>>> w = np.array((1,3,-7)) 
>>> a = np.array(((1,-1,0),(0,-1,-1),(1,0,2))) 
>>> np.linalg.solve(a,w) 
array([ 3., 2., -5.]) 

The values that solve our linear system are, therefore, x = 3, y = 2, and z = -5. In other words, 
these are the coefficients that build our desired linear combination. We can say that the vector 
(1, 3, -7) has coordinates (3, 2, -5) with respect to the basis (1, 0, 1), (-1, -1, 0), (0, -1, 2). 

The story is the same in higher dimensions: as long as it is possible to do so, we can write a 
vector as a linear combination of other vectors by solving a corresponding system of linear 
equations. But, it’s not always possible to write a linear combination, and not every system of 
linear equations has a unique solution or even a solution at all. The question of whether a 
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collection of vectors forms a basis is computationally equivalent to the question of whether a 
system of linear equations has a unique solution. 

This profound connection is a good place to bookend part 1 with its focus on linear algebra. 
There will be plenty of more linear algebra nuggets throughout the book, but they are even 
more useful when we pair them with the core topic of part 2: calculus. 

7.4.2 Exercises 

 
Exercise 7.27: How can you write the vector (5, 5) as a linear combination of (10, 1) (3, 2)? 
Solution: This is equivalent to asking what numbers a and b satisfy the equation 

 
or what vector (a, b) satisfies the matrix equation: 

 
We can find a solution with NumPy: 
>>> matrix = np.array(((10,3),(1,2))) 

>>> vector = np.array((5,5)) 

>>> np.linalg.solve(matrix,vector) 

array([-0.29411765, 2.64705882]) 
This means the linear combination (which you can check!) is as follows: 

 
 

 
Exercise 7.28: Write the vector (3, 0, 6, 9) as a linear combination of the vectors (0, 0, 1, 1), (0, -2, -1, -1), (1, -2, 0, 2), 
and (0, 0, -2, 1). 
Solution: The linear system to solve is 

 
where the columns of the 4-by-4 matrix are the vectors we want to build the linear combination from. NumPy gives us 
the solution to this system: 
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>>> matrix = np.array(((0, 0, 1, 0), (0, -2, -2, 0), (1, -1, 0, -2), (1, -1, 2, 1))) 

>>> vector = np.array((3,0,6,9)) 

>>> np.linalg.solve(matrix,vector) 

array([ 1., -3., 3., -1.]) 
This means that the linear combination is  

 
 

7.5 Summary 
• Model objects in a 2D video game can be done as polygonal shapes built out of line 

segments. 
• Given two vectors u and v, the points of the form u + tv for any real number t lie on a 

straight line. In fact, any line can be described with this formula. 
• Given real numbers a, b, and c, where at least one of a or b is non-zero, the points (x, 

y) in the plane satisfying ax + by = c lie on a straight line. This is called the standard 
form for the equation of a line, and any line can be written in this form for some choice 
of a, b, and c. Equations for lines are called linear equations. 

• Finding the point where two lines intersect in the plane is equivalent to finding the values 
(x, y) that simultaneously satisfy two linear equations. A collection of linear equations 
that we seek to solve simultaneously is called a system of linear equations. 

• Solving a system of two linear equations is equivalent to finding what vector can be 
multiplied by a known 2-by-2 matrix to yield a known vector. 

• NumPy has a built-in function, numpy.linalg.solve, that takes a matrix and a vector 
and solves the corresponding system of linear equations automatically, if possible. 

• Some systems of linear equations cannot be solved. For instance, if two lines are parallel, 
they can have either no intersection points or infinitely many (which would mean they 
are the same line). This means there is no (x, y) value that simultaneously satisfies both 
lines’ equations. A matrix representing such a system is called singular. 

• Planes in 3D are the analogs of lines in 2D. They are the sets of points (x, y, z) satisfying 
equations of the form ax + by + cz = d. 

• Two non-parallel planes in 3D intersect at infinitely many points, and specifically, the set 
of points they share form a 1D line in 3D. Three planes can have a unique point of 
intersection that can be found by solving the system of three linear equations 
representing the planes. 

• Lines in 2D and planes in 3D are both cases of hyperplanes, sets of points in n-dimensions 
that are solutions to a single linear equation. 

• In n-dimensions, you need a system of at least n linear equations to find a unique 
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solution. If you have exactly n linear equations and they have a unique solution, those 
are called independent equations. 

• Figuring out how to write a vector as a linear combination of a given set of vectors is 
computationally equivalent to solving a system of linear equations. If the set of vectors 
is a basis for the space, this is always possible. 
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Understanding rates of change 

This chapter covers 

• Calculating the average rate of change in a mathematical function
• Approximating the instantaneous rate of change at a point
• Picturing how the rate of change is itself changing
• Reconstructing a function from its rate of change

In this chapter, I introduce you to two of the most important concepts from calculus: the 
derivative and the integral. Both of these are operations that work with functions. The derivative 
takes a function and gives you another function measuring its rate of change. The integral does 
the opposite; it takes a function representing a rate of change and gives you back a function 
measuring the original, cumulative value. 

I focus on a simple example from my own work in data analysis for oil production. The set up 
we’ll picture is a pump lifting crude oil out of a well, which then flows through a pipe into a tank. 
The pipe is equipped with a meter that continuously measures the rate of fluid flow, and the 
tank is equipped with a sensor that detects the height of fluid in the tank and reports the volume 
of oil stored within (figure 8.1). 
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Figure 8.1: Schematic diagram of a pump lifting oil from a well and pumping it into a tank. 

The volume sensor measurements tell us the volume of oil in the tank as a function of time, 
while the flow meter measurements tell us the volume flowing into the tank per hour, also as a 
function of time. In this example, the volume is the cumulative value and the flow rate is its 
rate of change. 

In this chapter, we solve two main problems. First, in our example, we start with known, 
cumulative volumes over time and calculate the flow rate as a function of time using the 
derivative. Second, we do the opposite task, starting with the flow rate as a function of time 
and calculating the cumulative volume of oil in the tank over time using the integral. Figure 8.2 
shows this process. 
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Figure 8.2: Finding the flow rate over time from the volume using the derivative and then finding the volume 
over time from the flow rate using the integral. 

We’ll write a function called get_flow_rate(volume_function) that takes the volume function
as an input and returns a new Python function that gives the flow rate at any time. Then we’ll 
write a second function, get_volume(flow_rate_function), that takes the flow rate function
and returns a Python function giving volume over time. I intersperse a few smaller examples 
along the way as a warm up to help you think about rates of change. 

Even though its big ideas aren’t that complicated or foreign, calculus gets a bad reputation 
because it requires so much tedious algebra. For that reason, I focus on introducing new ideas 
in this chapter but not a lot of new techniques. Most of the examples require only the linear 
function math that we covered in chapter 7. Let’s get started! 

8.1 Calculating average flow rate from volume 
Let’s start by assuming we know the volume in the tank over time, which is encoded as a Python 
function called volume. This function takes as an argument, the time in hours after a predefined
starting point, and returns the volume of oil in the tank at that time, measured in a unit called 
barrels (abbreviated “bbl”). To keep the focus on the ideas rather than the algebra, I won’t even 
tell you the formula for the volume function (though you can see it in the source code if you’re
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curious). All you need to do for now is to call it and to plot it. When you plot it, you’ll see 
something like figure 8.3. 

Figure 8.3: A plot of the volume function shows the volume of oil in the tank over time. 

We want to move in the direction of finding the flow rate into the tank at any point in time, so 
for our first baby step, let’s calculate this in an intuitive way. In this example, let’s write a 
function average_flow_rate(v, t1, t2) that takes a volume function v, a start time t1, and
an end time t2, and returns a number that is the average flow rate into the tank on the time
interval. That is, it tells us the overall number of barrels per hour entering the tank. 

8.1.1 Implementing an average_flow_rate function 

The word per in "barrels per hour” suggests that we’re going to do some division to get our 
answer. The way to calculate the average flow rate is to take the total change in volume divided 
by the elapsed time:  

The elapsed time between the starting time t1 and the ending time t2 measured in hours is t2 − 
t1. If we have a function V(t) that tells us volume as a function of time, the overall change in 
volume is the volume at t2 minus the volume at t1, or V(t2) − V(t1). That gives us a more specific 
equation to work with: 

This is how we calculate rates of change in different contexts. For instance, your speed when 
driving a car is the rate at which you cover distance with respect to time. To calculate your 
average speed for a drive, you divide your total distance traveled in miles by the elapsed time 
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in hours to get a result in miles per hour (mph). To know the distance traveled and time elapsed, 
you need to check your clock and odometer at the beginning and end of the trip. 

Our formula for average flow rate depends on the volume function V and the starting and ending 
times t1 and t2, which are the parameters we’ll pass to the corresponding Python function. The 
body of the function is a direct translation of this mathematical formula to Python: 

def average_flow_rate(v,t1,t2): 
    return (v(t2) - v(t1))/(t2 - t1) 

This function is simple, but important enough to walk through as an example calculation. Let’s 
use the volume function (plotted in figure 8.3 and included in the source code) and say we want
to know the average flow rate into the tank between the 4-hour mark and the 9-hour mark. In 
this case, t1 = 4 and t2 = 9. To find the starting and ending volumes, we can evaluate the
volume function at these times:

>>> volume(4) 
3.3 
>>> volume(9) 
5.253125 

Rounding for simplicity, the difference between the two volumes is 5.25 bbl − 3.3 bbl = 1.95 
bbl, and the total elapsed time is 9 hr − 4 hr = 5 hr. Therefore, the average flow rate into the 
tank is roughly 1.95 bbl divided by 5 hr or 0.39 bbl/hr. Our function confirms we got this right: 

>>> average_flow_rate(volume,4,9) 
0.390625 

This completes our first basic example of finding the rate of change of a function. That wasn’t 
too bad! Before we move on to some more interesting examples, let’s spend a bit more time 
interpreting what the volume function does. 

8.1.2 Picturing the average flow rate with a secant line 

Another useful way to think about the average rate of change in volume over time is to look at 
the volume graph. Let’s focus on the two points on the volume graph between which we 
calculated the average flow rate. In figure 8.4, the points are shown as dots on the graph, and 
I’ve drawn a line passing through them. A line passing through two points on a graph like this 
is called a secant line. 
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Figure 8.4: A secant line connects the starting and ending points on the volume graph. 

As you can see, the graph is higher at 9 hours than at 4 hours because the volume of oil in the 
tank increased during this period. This causes the secant line connecting the starting and ending 
points to slope upward. It turns out the slope of the secant tells us exactly what the average 
flow rate is on the time interval. 

Here’s why. Given two points on a line, the slope is the change in the vertical coordinate divided 
by the change in the horizontal coordinate. In this case, the vertical coordinate goes from V(t1) 
to V(t2) for a change of V(t2) − V(t1), and the horizontal coordinate goes from t1 to t2 for a 
change of t2 − t1. The slope is then (V(t2) − V(t1)) / (t2-t1), exactly the same calculation as the 
average flow rate (figure 8.5)!  
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Figure 8.5: We calculate the slope of a secant line in the same way as the average rate of change of the 
volume function. 

As we continue, you can picture secant lines on graphs to reason about the average rate of 
change in a function. 

8.1.3 Negative rates of change 

One case worth a brief mention is that the secant line can have a negative slope. Figure 8.6 
shows the graph of a different volume function, which you can find implemented as 
decreasing_volume in the source code for this book. Figure 8.6 plots the volume in the tank 
decreasing over time. 
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Figure 8.6: A different volume function shows that the volume in the tank decreases over time. 

This example isn’t compatible with our previous example because we don’t expect oil to be 
flowing out of the tank back into the ground. But it does illustrate that a secant line can go 
downward; for instance, from t = 0 to t = 4. On this time interval, the change in volume 
is -3.2 bbl (figure 8.7). 

Figure 8.7: Two points on a graph that define a secant line with a negative slope 
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In this case, the slope is -3.2 bbl divided by 4 hr or -0.8 bbl/hr. That means that the rate at 
which oil is entering the tank is -0.8 bbl/hr. A more sensible way to say this is that oil is leaving 
the tank at a rate of 0.8 bbl/hr. Regardless of whether the volume function is increasing or 
decreasing, our average_flow_rate function is reliable. In this case, 

>>> average_flow_rate(decreasing_volume,0,4) 
-0.8 

Equipped with this function to measure the average flow rate, we can go a step further in the 
next section—figuring out how the flow rate changes over time. 

8.1.4 Exercises 

 
Exercise 8.1: Suppose you start a road trip at noon when your odometer reads 77,641 miles, and you end your road trip 
at 4:30 in the afternoon with your odometer reading 77,905 miles. What was your average speed during the trip? 
Solution: The total distance traveled is 77,905 − 77,641 = 264 miles covered over 4.5 hours. The average speed is 264 
mi / 4.5 hr or about 58.7 mph. 
 

 
Exercise 8.2: Write a Python function secant_line(f,x1,x2) that takes a function f(x) and two values, x1 and 
x2, and that returns a new function representing a secant line over time. For instance, if you ran line = 
secant_line(f,x1,x2), then line(3) would give you the y value of the secant line at x = 3 . 
Solution: 
def secant_line(f,x1,x2): 

    def line(x): 

        return f(x1) + (x-x1) * (f(x2)-f(x1))/(x2-x1) 

    return line 

 

 
Exercise 8.3: Write a function that uses the code from the previous exercise to plot a secant line of a function f 
between two given points. 
Solution: 
def plot_secant(f,x1,x2,color='k'): 

    line = secant_line(f,x1,x2) 

    plot_function(line,x1,x2,c=color) 

    plt.scatter([x1,x2],[f(x1),f(x2)],c=color) 
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8.2 Plotting the average flow rate over time 
One of our big objectives for this chapter is to start with the volume function and recover the 
flow rate function. To find the flow rate as a function of time, we need to ask how rapidly the 
volume of the tank is changing at different points in time. For starters, we can see in figure 8.8 
that the flow rate is changing over time—different secant lines on the volume graph have 
different slopes. 

 
Figure 8.8: Different secant lines on the volume graph have different slopes, indicating that the flow rate is 
changing. 

In this section, we get closer to finding the flow rate as a function of time by calculating the 
average flow rate on different intervals. We break up the 10-hour period into a number of smaller 
intervals of a fixed duration (for example, 10, one-hour intervals) and calculate the average 
flow rate for each one. 

We package this work in a function called interval_flow_rates(v,t1,t2,dt), where v is the 
volume function, t1 and t2 are the starting and ending times, and dt is the fixed duration of the 
time intervals. This function returns a list of pairs of time and flow rate. For instance, if we break 
the 10 hours into 1-hour segments, the result should look like this: 

[(0,...), (1,...), (2,...), (3,...), (4,...), (5,...), (6,...), (7,...), 
     (8,...), (9,...)] 

Where each ... would be replaced by the flow rate in the corresponding hour. Once we get 
these pairs, we can draw them as a scatter plot alongside the flow rate function from the 
beginning of the chapter and compare the results. 
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8.2.1 Finding the average flow rate in different time intervals 

As a first step to implementing interval_flow_rates(), we need to find the starting points for
each time interval. This means finding a list of time values from the starting time t1 to the
ending time t2 in increments of the interval length dt. There’s a handy function in Python’s
NumPy library called arange that does this for us. For instance, starting from time zero and
going to time 10 in 0.5-hour increments gives us the following interval start times: 

>>> import numpy as np 
>>> np.arange(0,10,0.5) 
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 

 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5]) 

Note that the end time of 10 hours isn’t included in the list. This is because we’re listing the 
start time for each half hour, and the half hour from t=10 to t=10.5 isn’t part of the overall time 
interval we’re considering. 

For each of these interval start times, adding dt returns the corresponding interval end times.
For instance, the interval starting at 3.5 hours in the preceding list ends at 3.5 + 0.5 = 4.0 
hours. To implement the interval_flow_rates function, we just need to use our
average_flow_rate function on each of the intervals. Here’s how the complete function looks:

def interval_flow_rates(v,t1,t2,dt): 
    return [(t,average_flow_rate(v,t,t+dt)) #<1> 

  for t in np.arange(t1,t2,dt)] 

#1 For every interval start time t, finds the average flow rate from t to t+dt. (We want the list of pairs of t with the 
corresponding rate.) 

If we pass in our volume function with 0 hours and 10 hours as the start and end times, and 1
hour as the interval length, we get a list telling us the flow rate in each hour: 

>>> interval_flow_rates(volume,0,10,1) 
[(0, 0.578125), 
 (1, 0.296875), 
 (2, 0.109375), 
 (3, 0.015625), 
 (4, 0.015625), 
 (5, 0.109375), 
 (6, 0.296875), 
 (7, 0.578125), 
 (8, 0.953125), 
 (9, 1.421875)] 

We can tell a few things by looking at this list. The average flow rate is always positive, meaning 
that there is a net addition of oil into the tank in each hour. The flow rate decreases to its lowest 
value around hours 3 and 4 and then increases to its highest value in the final hour. This is even 
clearer if we plot it on a graph. 
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8.2.2 Plotting the interval flow rates 

We can use Matplotlib’s scatter function to quickly make a plot of these flow rates over time.
This function plots a set of points on a graph, given a list of horizontal coordinates followed by 
a list of vertical coordinates. We need to pull out the times and flow rates as two separate lists 
of 10 numbers and then pass them to the function. To avoid repeating this process, we can build 
it all into one function: 

def plot_interval_flow_rates(volume,t1,t2,dt): 
    series = interval_flow_rates(volume,t1,t2,dt) 
    times = [t for (t,_) in series] 
    rates = [q for (_,q) in series] 
    plt.scatter(times,rates) 

Calling plot_interval_flow_rates(volume,0,10,1) generates a scatter plot of the data
produced by interval_flow_rates. Figure 8.9 shows the result of plotting the volume function
from zero to 10 hours in increments of one hour. 

Figure 8.9: A plot of the average flow rate in each hour 

This confirms what we saw in the data: the average flow rate decreases to its lowest value 
around hours 3 and 4 and then increases again after that to a highest rate of nearly 1.5 bbl/hr. 
Let’s compare these average flow rates with the actual flow rate function. Again, I don’t want 
you to worry about the formula for flow rate as a function of time. I include a flow_rate function
in the source code for this book that we can plot (figure 8.10), along with the scatter plot. 
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Figure 8.10: A plot of the average flow rate in each hour (dots) and the actual flow rate (smooth curve) per hour 

These two plots tell the same story, but they don’t quite line up. The difference is that the dots 
measure average flow rates, whereas the flow_rate function shows the instantaneous value of
the flow rate at any point in time. 

To understand this, it’s helpful to think of the road trip example again. If you cover 60 miles in 
1 hour, your average speed is 60 mph. However, it’s unlikely your speedometer read exactly 60 
mph at every instant of the hour. At some point on the open road, your instantaneous speed 
might have been 70 mph, while at another time in traffic, you might have slowed down to 50 
mph. 

Similarly, the flow rate meter on the pipeline needn’t agree with the average flow rate on the 
subsequent hour. It turns out that if you make the time intervals smaller, the graphs are in 
closer agreement. Figure 8.11 shows the plot of the average flow rates at 20-minute intervals 
(⅓ hours) next to the flow rate function. 
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Figure 8.11: The graph of the flow rate over time compared with the average flow rates at 20-min intervals. 

The average flow rates are still not a perfect match to the instantaneous flow rates, but they’re 
a lot closer. In the next section, we’ll run with this idea and calculate the flow rates on extremely 
small intervals, where the difference between average and instantaneous rates is imperceptible. 

8.2.3 Exercises 

 
Exercise 8.4: Plot the decreasing_volume flow rates over time at 0.5-hour intervals. When is its flow rate the 
lowest? That is, when is oil leaving the tank at the fastest rate? 
Solution: Running plot_interval_flow_rates(decreasing_volume,0,10,0.5), we can see that the rate is 
the lowest (most negative) just before the 5-hour mark. 
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Exercise 8.5: Write a linear_volume_function and plot the flow rate over time to show that it is constant. 
Solution: A linear_volume_function(t) has the form v(t) = at + b for the constants a and b. For instance, 

def linear_volume_function(t): 

    return 5*t + 3 

 

plot_interval_flow_rates(linear_volume_function,0,10,0.25) 

 

 
This graph shows that for a linear volume function, the flow rate is constant over time. 
 

8.3 Approximating instantaneous flow rates 
As we calculate the average rate of change in our volume function over smaller and smaller time 
intervals, we get closer and closer to measuring what’s going on in a single instant. But if we 
try to measure the average rate of change in volume at a single instant, meaning an interval 
whose start and end times are the same, we run into trouble. At a time t, the formula for average 
flow rate would read: 

 
Dividing 0/0 is undefined, so this method doesn’t work. This is where algebra no longer helps 
us, and we need to turn to reasoning from calculus. In calculus, there’s an operation called the 
derivative that sidesteps this undefined division problem to tell you the instantaneous rate of 
change in a function.  
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In this section, I explain why the instantaneous flow rate function, which in calculus is called the 
derivative of the volume function, is well-defined and how to approximate it. We’ll write a 
function instantaneous_flow_rate(v,t) that takes a volume function v and a single point in 
time t, and returns an approximation of the instantaneous rate at which oil is flowing into the 
tank. This result is the number of barrels per hour, which should match the value of the 
instantaneous_flow_rate function exactly. 

Once we do that, we’ll write a second function get_flow_rate_function(v), which is the 
curried version of instantaneous_flow_rate(). Its argument is a volume function, and it 
returns a function that takes a time and returns an instantaneous flow rate. This function 
completes our first of two major objectives for this chapter: starting with a volume function and 
producing a corresponding flow rate function. 

8.3.1 Finding the slope of small secant lines 

Before we do any coding, I want to convince you that it makes sense to talk about an 
“instantaneous flow rate” in the first place. To do that, let’s zoom in on the volume graph around 
a single instant and see what’s going on (figure 8.12). Let’s pick the point where t = 1 hour and 
look at a smaller window around it. 

 
Figure 8.12: Zooming in on the 1-hour window around t = 1 hr 

On this smaller time interval, we no longer see much of the curviness of the volume graph. That 
is, the steepness of the graph has less variability than on the whole 10-hour window. We can 
measure this by drawing some secant lines and seeing that their slopes are fairly close (figure 
8.13).  
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Figure 8.13: Two secant lines around t = 1 hr have similar slopes, meaning that the flow rate doesn’t change 
much during this time interval. 

If we zoom in even further, the steepness of the graph looks more and more constant. Zooming 
in to the interval between 0.9 hours and 1.1 hours, the volume graph is almost a straight line. 
If you draw a secant line over this interval, you can barely see the graph rise above the secant 
line (figure 8.14). 

 
Figure 8.14: The volume graph looks nearly straight at a smaller interval around t = 1 hr. 

Finally, if we zoom in to the window between t = 0.99 hours and t = 1.01 hours, the volume 
graph is indistinguishable from a straight line (figure 8.15). At this level, a secant line appears 
to overlap exactly with the graph of the function appearing like one line. 
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Figure 8.15: Zooming in even closer, the volume graph is visually indistinguishable from a straight line. 

If you keep zooming in, the graph continues to look like a line. It’s not that the graph is a line 
at this point, it’s that it gets closer and closer to looking like a line the closer you zoom in. The 
leap in reasoning that we can make in calculus is that there’s a single, best line approximating 
a smooth graph like the volume graph at any point. Here are a few calculations showing that 
the slopes of smaller and smaller secant lines converge to a single value, suggesting we really 
are approaching a single “best” approximation of the slope: 

>>> average_flow_rate(volume,0.5,1.5) 
0.42578125 
>>> average_flow_rate(volume,0.9,1.1) 
0.4220312499999988 
>>> average_flow_rate(volume,0.99,1.01) 
0.42187656249998945 
>>> average_flow_rate(volume,0.999,1.001) 
0.42187501562509583 
>>> average_flow_rate(volume,0.9999,1.0001) 
0.42187500015393936 
>>> average_flow_rate(volume,0.99999,1.00001) 
0.4218750000002602 

Unless those zeroes are a big coincidence, the number we’re approaching is 0.421875 bbl/hr. 
We can conclude that the line of best approximation for the volume function at the point t = 1 
hour has a slope of 0.421875. If we zoom out again (figure 8.16), we can see what this line of 
best approximation looks like. 
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Figure 8.16: A line with slope 0.421875 is the best approximation of the volume function at time t = 1 hr. 

This line is called the tangent line to the volume graph at the point t = 1, and it’s distinguished 
by the fact that it lies flat against the volume graph at that point. Because the tangent line is 
the line that best approximates the volume graph, its slope is the best measure of the 
instantaneous slope of that graph and, therefore, the instantaneous flow rate at t = 1. Lo and 
behold, the flow_rate function I’ve provided in the source code gives us exactly the same 
number that the smaller and smaller secant line slopes approach: 

>>> flow_rate(1) 
0.421875 

To have a tangent line, a function needs to be “smooth.” As a mini-project at the end of this 
section, you can try repeating this exercise with a function that’s not smooth, and you’ll see that 
there’s no line of best approximation. When we can find a tangent line to the graph of a function 
at a point, its slope is called the derivative of the function at the point. For instance, the 
derivative of the volume function at the point t = 1 is equal to 0.421875 (barrels per hour). 

8.3.2 Building the instantaneous flow rate function 

Now that we’ve seen how to calculate instantaneous rates of change of the volume function, we 
have what we need to implement the instantaneous_flow_rate function. There’s one major 
obstacle to automating the procedure we previously used, which is that Python can’t “eyeball” 
the slopes of several small secant lines and decide what number they’re converging to. To get 
around this, we can calculate slopes of smaller and smaller secant lines until they stabilize to 
some fixed number of decimal digits. 

For instance, we could have decided that we were going to find the slopes of a series of secant 
lines, each a tenth as wide as the previous, until the values stabilized to four decimal places. 
The following table shows the slopes once again. 
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Secant line interval Secant line slope 

0.5 to 1.5 0.42578125 

0.9 to 1.1 0.4220312499999988 

0.99 to 1.01 0.42187656249998945 

0.999 to 1.001 0.42187501562509583 

In the last two rows, the slopes agree to four decimal places (they differ by less than 10-4), so 
we could round the final result to 0.4219 and call that our result. This isn’t the exact result of 
0.421875, but it’s a solid approximation to the specified number of digits. 

Fixing the number of digits of the approximation, we now have a way to know if we are done. 
If after some large number of steps, we still haven’t converged to the specified number of digits, 
we can say that there is no line of best approximation and, therefore, no derivative at the point. 
Here’s how this procedure translates to Python: 

def instantaneous_flow_rate(v,t,digits=6): 
    tolerance = 10 ** (-digits) #<1> 
    h = 1 
    approx = average_flow_rate(v,t-h,t+h) #<2> 
    for i in range(0,2*digits): #<3> 
        h = h / 10 
        next_approx = average_flow_rate(v,t-h,t+h) #<4> 
        if abs(next_approx - approx) < tolerance: 
            return round(next_approx,digits) #<5> 
        else: 
            approx = next_approx #<6> 
    raise Exception("Derivative did not converge") #<7> 

#1 If two numbers differ by less than a tolerance of 10-d, then they agree to d decimal places. 
#2 Calculates a first secant line slope on an interval spanning h=1 units on either side of the target point t 
#3 As a crude approximation, we only try 2·digits iterations before giving up on the convergence. 
#4 At each step, calculates the slope of a new secant line around the point t on a 10 times smaller interval 
#5 If the last two approximations differ by less than the tolerance, rounds the result and returns it 
#6 Otherwise, runs the loop again with a smaller interval 
#7 If we exceed the maximum number of iterations, the procedure has not converged to a result. 

I arbitrarily chose six digits as the default precision, so this function matches our result for the 
instantaneous flow rate at the 1-hour mark: 

>>> instantaneous_flow_rate(volume,1) 
0.421875 
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We can now compute the instantaneous flow rate at any point in time, which means we have 
the complete data of the flow rate function. Next, we can plot it and confirm it matches the 
flow_rate function I provide in the source code. 

8.3.3 Currying and plotting the instantaneous flow rate function 

For a function that behaves like the flow_rate function in the source code, taking a time variable 
and returning a flow rate, we need to curry the instantaneous_flow_rate function. The curried 
function takes a volume function (v) and returns a flow rate function: 

def get_flow_rate_function(v): 
    def flow_rate_function(t): 
        instantaneous_flow_rate(v,t) 
    return flow_rate_function 

The output of get_flow_rate_function(v) is a function that should be identical to the function 
flow_rate in the source code. We can plot these both over the 10-hour period to confirm and, 
indeed, figure 8.17 shows that their graphs are indistinguishable: 

plot_function(flow_rate,0,10) 
plot_function(get_flow_rate_function(volume),0,10) 

 
Figure 8.17: Plotting the flow_rate function alongside the get_flow_rate function shows that the graphs 
are indistinguishable. 

We’ve completed our first major goal of this chapter, producing the flow rate function from the 
volume function. As I mentioned at the beginning of the chapter, this procedure is called taking 
a derivative. 
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Given a function like the volume function, another function giving its instantaneous rate of 
change at any given point is called its derivative. You can think of the derivative as an operation 
that takes one (sufficiently smooth) function and returns another function measuring the rate 
of change of the original (figure 8.18). In this case, it would be correct to say that the flow rate 
function is the derivative of the volume function. 

 
Figure 8.18: You can think of the derivative as a machine that takes a function and returns another function, 
measuring the rate of change of the input function. 

The derivative is a general procedure that works on any function f(x), which is smooth enough 
to have tangent lines at every point. The derivative of a function f is written f’ (and reads “f 
prime”), so f’(x) means the instantaneous rate of change in f with respect to x. Specifically, f’(5) 
is the derivative of f(x) at x = 5 , measuring the slope of a tangent line to f at x = 5. There are 
some other common notations for the derivative of a function including: 

 
The df and dx are meant to signify infinitesimal (infinitely small) changes in f and x, respectively, 
and their quotient gives the slope of an infinitesimal secant line. The last notation of the three 
is nice because it makes d/dx look like an operation applied to f(x). In many contexts, you’ll see 
standalone derivative operators like d/dx. This, in particular, means “the operation of taking the 
derivative with respect to x.” Figure 8.19 shows a schematic of how these notations fit together. 

 
Figure 8.19: The “derivative with respect to x” as an operation that takes a function and returns a new function 
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We make more use of derivatives throughout the rest of this book, but for now, let’s turn to the 
counterpart operation—the integral. 

8.3.4 Exercises 

 
Exercise 8.6: Confirm that the graph of the volume function is not a straight line on the interval from 0.999 hours to 
1.001 hours. 
Solution: If it were a straight line, it would equal its secant line at every point. However, the secant line from 0.999 
hours to 1.001 hours has a different value than the volume function at t = 1 hour: 

>>> volume(1) 

2.878125 

>>> secant_line(volume,0.999,1.001)(1) 

2.8781248593749997 

 

 
Exercise 8.7: Approximate the slope of a tangent line to the volume graph at t = 8 by computing the slopes of smaller 
and smaller secant lines around t = 8. 
Solution: 
>>> average_flow_rate(volume,7.9,8.1) 

0.7501562500000007 

>>> average_flow_rate(volume,7.99,8.01) 

0.750001562499996 

>>> average_flow_rate(volume,7.999,8.001) 

0.7500000156249458 

>>> average_flow_rate(volume,7.9999,8.0001) 

0.7500000001554312 
It appears that the instantaneous rate of change at t = 8 is 0.75 bbl/hr. 
 

 
Exercise 8.8: For the sign function defined in Python, convince yourself that it doesn’t have a derivative at x = 0: 

def sign(x): 

    return x / abs(x) 
Solution: On smaller and smaller intervals, the slope of a secant line gets bigger and bigger rather than converging on a 
single number: 
>>> average_flow_rate(sign,-0.1,0.1) 

10.0 

>>> average_flow_rate(sign,-0.01,0.01) 

100.0 
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>>> average_flow_rate(sign,-0.001,0.001) 

1000.0 

>>> average_flow_rate(sign,-0.000001,0.000001) 

1000000.0 
This is because the sign function jumps from -1 to 1 immediately at x = 0, and it doesn’t look like a straight line when 
you zoom in on it. 
 

8.4 Approximating the change in volume 
For the rest of the chapter, I’m going to focus on our second major objective: starting with a 
known flow rate function and recovering the volume function. This is the reverse of the process 
of finding a derivative because we assume we know the rate of change of a function, and we 
want to recover the original function. In calculus, this is called integration. 

I’ll break the task of recovering the volume function into a few smaller examples, which will help 
you get a sense of how integration works. For the first example, we write two Python functions 
to help us find the change in volume in the tank over a specified period of time. 

We call the first function brief_volume_change(q,t,dt), taking a flow rate function q, a time 
t, and a short time duration dt, which returns the approximate change in volume from time t 
to time t + dt. This function calculates its result by assuming the time interval is so short that 
the flow rate does not change by much. 

We call the second function volume_change(q,t1,t2,dt) and, as the difference in naming 
suggests, we use it to calculate the volume change on any time interval, not just a brief one. 
Its arguments are the flow rate function q, a start time t1, an end time t2, and a small time 
interval dt. The function breaks the time interval down into increments of duration dt, which 
are short enough to use the brief_volume_change function. The total volume change returned 
is the sum of all of the volume changes on the short time intervals.  

8.4.1 Finding the change in volume for a short time interval 

To understand the rationale behind the brief_volume_change function, let’s return to the 
familiar example of a speedometer on a car. If you glance at your speedometer and it reads 
exactly 60 mph, you might predict that in the next two hours, you’ll travel 120 miles, which is 
2 hours times 60 mph. That estimate could be correct if you’re lucky, but it’s also possible that 
the speed limit increases or that you exit the freeway and park the car. The point is, one glance 
at a speedometer won’t help you estimate the distance traveled over a long period. 

On the other hand, if you used the value of 60 mph to calculate how far you traveled in a single 
second after looking at the speedometer, you’d probably get a very accurate answer; your speed 
is not going to change that much over a single second. A second is 1/3,600 of an hour, so 60 
mph times 1/3,600 per hour gives you 1/60 of a mile, or 88 feet. Unless you’re actively slamming 
on the brakes or flooring the gas pedal, this is probably a good estimate. 
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Returning to flow rates and volumes, let’s assume that we’re working with a short enough 
duration that the flow rate is roughly constant. In other words, the flow rate on the time interval 
is close to the average flow rate on the time interval, so we can apply our original equation: 

 
Rearranging this equation, we can get an approximation for the change in volume: 

 
Our small_volume_change function is just a translation of this assumed formula into Python 
code. Given a flow rate function q, we can find the flow rate at the input time t as q(t), and we 
just need to multiply it by the duration dt to get the change in volume: 

def small_volume_change(q,t,dt): 
    return q(t) * dt 

Because we have an actual pair of volume and flow rate functions, we can now test how good 
our approximation is. As expected, the prediction is not great for a whole hour interval: 

>>> small_volume_change(flow_rate,2,1) 
0.1875 
>>> volume(3) - volume(2) 
0.109375 

That approximation is off by about 70%. By comparison, we get a great approximation on a 
time interval of 0.01 hours. The result is within 1% of the actual volume change: 

>>> small_volume_change(flow_rate,2,0.01) 
0.001875 
>>> volume(2.01) - volume(2) 
0.0018656406250001645 

Because we can get good approximations for the volume change on small time intervals, we can 
piece them together to get the volume change on a longer interval. 

8.4.2 Breaking up time into smaller intervals 

To implement the function volume_change(q,t1,t2,dt), we split the time from t1 to t2 into 
intervals of duration dt. For simplicity, we’ll only handle values of dt that evenly divide t2 - t1 
so that we break the time period into a whole number of intervals. 

Once again, we can use the NumPy arange function to get the starting time for each of the 
intervals. The function call np.arange(t1,t2,dt) gives us an array of times from t1 to t2 in 
increments of dt. For each time value t in this array, we can find the volume change in the 
ensuing time interval using small_volume_change. Finally, we need to sum the results to get 
the total volume change over all of the intervals. This can be done in roughly one line: 
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def volume_change(q,t1,t2,dt): 
    return sum(small_volume_change(q,t,dt) 
               for t in np.arange(t1,t2,dt)) 

With this function, we can break up the time from 0 to 10 hours into 100 time intervals of 
duration 0.1 hours and sum the volume changes during each. The result matches the actual 
volume change to one decimal place: 

>>> volume_change(flow_rate,0,10,0.1) 
4.32890625 
>>> volume(10) - volume(0) 
4.375 

If we break the time into smaller and smaller intervals, the results get better and better. For 
instance: 

>>> volume_change(flow_rate,0,10,0.0001) 
4.3749531257812455 

As with the process of taking a derivative, we can make the intervals smaller and smaller, and 
our results will converge to the expected answer. Calculating the overall change in a function 
on some interval from its rate of change is called a definite integral. We’ll return to the definition 
of the definite integral in the last section, but for now, let’s focus on how to picture it. 

8.4.3 Picturing the volume change on the flow rate graph 

Suppose we’re breaking the 10-hour period into 1-hour intervals, even though we know this 
won’t give us very accurate results. The only 10 points on the flow rate graph we care about are 
the beginning times of each interval: 0 hours, 1 hour, 2 hours, 3 hours, and so on, up to 9 
hours. Figure 8.20 shows these points marked on a graph. 

 
Figure 8.20: Plotting the points used to calculate volume_change(flow_rate,0,10,1). 
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Our calculation assumed the flow rates in each of the intervals remained constant, which is 
clearly not the case. Within each of these intervals, the flow rate visibly changes. In our 
assumption, it’s as if we’re working with a different flow rate function, whose graph is constant 
during every hour. Figure 8.21 shows what these intervals look like next to the original. 

 
Figure 8.21: A second flow-rate graph (in orange) as if it behaved according to our assumptions about constant 
intervals 

In each interval, we calculate the flow rate (which is the height of each flat graph segment) 
times the elapsed time of one hour (which is the width of each graph segment). Each small 
volume we calculate is a height multiplied by a width on the graph, or the area of an imaginary 
rectangle. Figure 8.22 shows the rectangles filled in. 

 
Figure 8.22: The overall change in volume as a sum of the areas of 10 rectangles 
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As we shorten the time intervals, we see our results improve. Visually, that corresponds with 
more rectangles that can hug the graph more closely. Figure 8.23 shows what the rectangles 
look like using 30 intervals of ⅓ hours (20 minutes) each, or 100 intervals of 0.1 hours each. 

 
Figure 8.23: The volume as a sum of the area of 30 rectangles (left) or 100 rectangles (right) under the flow rate 
graph (figure 8.20) 

From these pictures, you can see that as our intervals get smaller and our computed result 
approaches the actual change in volume, the rectangles come closer and closer to filling the 
space under the flow rate graph. The insight here is that the area under the flow rate graph on 
a given time interval is (approximately) equal to the volume added to the tank on the same 
interval. 

A sum of the areas of rectangles approximating the area under a graph is called a Riemann sum. 
Riemann sums made of skinnier and skinnier rectangles converge to the area under a graph, 
much the same way as slopes of smaller and smaller secant lines converge to the slope of a 
tangent line. We’ll return to the convergence of Riemann sums and definite integrals, but first 
let’s make some more progress toward finding the volume over time. 
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8.4.4 Exercises 

 
Exercise 8.9: Approximately how much oil is added to the tank in the first 6 hours? In the last 4 hours? During which 
time interval is more added? 
Solution: In the first 6 hours, about 1.13 bbls of oil are pumped into the tank, which is less than the roughly 3.24 bbls 
pumped into the tank in the last 4 hours: 
>>> volume_change(flow_rate,0,6,0.01) 

1.1278171874999996 

>>> volume_change(flow_rate,6,10,0.01) 

3.2425031249999257 

 

8.5 Plotting the volume over time 
In the previous section, we were able to start with the flow rate and come up with 
approximations for the change in volume over a given time interval. Our main goal is to come 
up with the total volume in the tank at any given point in time. 

Here’s a trick question for you: if oil flows into the tank at a constant rate of 1.2 bbl/hr for 3 
hours, how much oil is in the tank after 3 hours? The answer is: we don’t know because I didn’t 
tell you how much was in the tank to begin with! Fortunately, if I tell you, then the answer is 
easy to figure out. For instance, if 0.5 bbls were in the tank to begin with, then 3.6 bbls were 
added during this period, and 0.5 + 3.6 = 4.1 bbls are in the tank at the end of the three-hour 
period. Adding the initial volume at time zero to the change in volume to any time T, we can 
find the total volume at time T. 

In our last examples for this section, we turn this idea into code to reconstruct a volume function. 
We implement a function called approximate_volume(q,v0,dt,T), which takes a flow rate q, 
an initial volume of oil in the tank v0, a small time interval dt, and a time T in question. The 
output of the function is an approximation of the total volume in the tank at time T, by adding 
the starting volume v0 to the change in volume from time 0 to time T. 

Once we do that, we can curry it to get a function called 
approximate_volume_function(q,v0,dt), which produces a function giving the approximate 
volume as a function of time. The function returned by approximate_volume_function is a 
volume function we can plot alongside our original volume function for comparison. 

8.5.1 Finding the volume over time 

The basic formula we’ll use is as follows: 

volume at time T = (volume at time 0) + (change in volume from time 0 to time T) 
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We need to provide the first term of the sum, the volume in the tank at time zero, because 
there’s no way to infer it from the flow rate function. Then we can use our volume_change 
function to find the volume from time zero to time T. Here’s what the implementation looks like: 

def approximate_volume(q,v0,dt,T): 
    return v0 + volume_change(q,0,T,dt) 

To curry this function, we can define a new function taking the first three arguments as 
parameters and returning a new function that takes the last parameter, T: 

def approximate_volume_function(q,v0,dt): 
    def volume_function(T): 
        return approximate_volume(q,v0,dt,T) 
    return volume_function 

This function directly produces a plottable volume function from our flow_rate function. 
Because the volume function I provide in the source code has volume(0) equal to 2.3, let’s use 
that value for v0. Finally, let’s try a dt value of 0.5, meaning we’re calculating our changes in 
volume in half-hour (30 min) intervals. Let’s see how this looks plotted against the original 
volume function (figure 8.24): 

plot_function(approximate_volume_function(flow_rate,2.3,0.5),0,10) 
plot_function(volume,0,10) 

 
Figure 8.24: A plot of the output of approximate_volume_function (jagged line) alongside the original 
volume function (smooth line) 

The good news is that the output is pretty close to our original volume function! But the result 
produced by approximate_volume_function is jagged, having steps every 0.5 hours. You might 
guess that this has to do with our dt value of 0.5 and that we’ll get a better approximation if 
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we reduce this value. This is correct, but let’s dig in to how the volume change is computed to 
see exactly why the graph looks like this, and why a smaller time interval will improve it. 

8.5.2 Picturing Riemann sums for the volume function 

At any point in time, the volume in the tank computed by our approximate volume function is 
the sum of the initial volume in the tank plus the change in volume to that point. For t = 4 
hours, the equation looks like this: 

volume at 4 hours = (volume at 0 hrs) + (change in volume from 0 hr to 4 hrs) 

The result of this sum gives us one point on the graph at the four-hour mark. The value at any 
other time is computed the same way. In this case, the sum consists of the 2.3 bbls at time 
zero plus a Riemann sum, giving us the change from zero hours to four hours. This is the sum 
of eight rectangles, each having a width of 0.5 hours, which fit evenly into the four-hour window. 
The result is approximately 3.5 bbls (figure 8.25). 

 
Figure 8.25: The volume in the tank at 4 hours using a Riemann sum. 

We could do the same thing for any other point in time. For example, figure 8.26 shows the 
result for eight hours in. 

 
Figure 8.26: The volume in the tank at 8 hours using a Riemann sum. 
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In this case, the answer is approximately 4.32 bbls in the tank at the eight-hour mark. This 
required summing 8/0.5 = 16 rectangle areas. These two values show up as points on the graph 
we produced (figure 8.27): 

 
Figure 8.27: The two previous results shown on the approximate volume graph. 

In both of these cases, we could get from zero to the point in time in question using a whole 
number of timesteps. To produce this graph, our Python code computes a lot of Riemann sums, 
corresponding to whole number hours and half hours, as well as all the points plotted in between. 

How does our code get the approximate volume at 3.9 hours, which isn’t divisible by the dt 
value of 0.5 hours? Looking back at the implementation of volume_change(q,t1,t2,dt), we 
made one small change in the volume calculation, corresponding to the area of one rectangle 
for every start time in np.arange(t1,t2,dt). When we find the volume change from 0 to 3.9 
hours with a dt of 0.5, our rectangles are given by: 

>>> np.arange(0,3.9,0.5) 
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5]) 

Even though the eight rectangles of width 0.5 hour go past the 3.9-hour mark, we calculate the 
area of all eight! To be completely clean, we should have probably shortened our last time 
interval to 0.4 hours, lasting from the end of the 7th time interval at 3.5 hours to the end time 
of 3.9 hours, and no further. As a mini-project at the end of this section, you can try updating 
the volume_change function to use a smaller duration for the last time interval, if necessary. 
For now, I’ll ignore this oversight. 

In the last section, we saw that we got better results by shrinking the dt value and, therefore, 
the widths of the rectangles. In addition to fitting the graph better, smaller rectangles are likely 
to have less error even if they slightly overshoot the end of a time interval. For instance, while 
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0.5-hour intervals can only add up to 3.5 hours or 4.0 hours but not 3.9 hours, 0.1-hour intervals 
can add up evenly to 3.9 hours. 

8.5.3 Improving the approximation 

Let’s try using smaller values of dt, corresponding to smaller rectangle sizes, and see the 
improvements we get. Here’s the approximation with dt = 0.1 hrs (figure 8.28 plots the results). 
The steps on the graph are barely visible, but they are smaller, and the graph stays closer to 
the actual volume graph than it did with 0.5-hour intervals: 

plot_function(approximate_volume_function(flow_rate,2.3,0.1),0,10) 
plot_function(volume,0,10) 

 
Figure 8.28: With dt = 0.1 hr, the graphs nearly match. 

With even smaller timesteps, like t=0.01 hours, the graphs are nearly indistinguishable (figure 
8.29): 

plot_function(approximate_volume_function(flow_rate,2.3,0.01),0,10) 
plot_function(volume,0,10) 
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Figure 8.29: With 0.01-hour timesteps, the graph of the approximate volume function is indistinguishable from 
the actual volume function. 

Even though the graphs appear to match exactly, we can ask the question of how accurate is 
this approximation. The graphs of the approximate volume functions with smaller and smaller 
values of dt get closer and closer to the actual volume graph at every point, so we could say 
the values are converging to the actual volume values. But at each step, the approximation still 
might disagree with the actual volume measurement. 

Here’s a way we could find the volume at any point to an arbitrary precision (within any tolerance 
we want). For any point t in time, we can recalculate volume_change(q,0,t,dt) with smaller 
and smaller values of dt until the outputs stop changing by more than the tolerance value. This 
looks a lot like our function to make repeated approximations of the derivative until they 
stabilize: 

def get_volume_function(q,v0,digits=6): 
    def volume_function(T): 
        tolerance = 10 ** (-digits) 
        dt = 1 
        approx = v0 + volume_change(q,0,T,dt) 
        for i in range(0,digits*2): 
            dt = dt / 10 
            next_approx = v0 + volume_change(q,0,T,dt) 
            if abs(next_approx - approx) < tolerance: 
                return round(next_approx,digits) 
            else: 
                approx = next_approx 
        raise Exception("Did not converge!") 
    return volume_function 

For instance, the volume v(1) is exactly 2.878125 bbls, and we can ask for any precision 
estimation of this result that we want. For example, for three digits, we get 

>>> v = get_volume_function(flow_rate,2.3,digits=3) 
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>>> v(1) 
2.878 

and for six digits, we get the exact answer: 

>>> v = get_volume_function(flow_rate,2.3,digits=6) 
>>> v(1) 
2.878125 

If you run this code yourself, you’ll see the second computation takes quite a while. This is 
because it has to run a Riemann sum consisting of millions of small volume changes to get the 
answer to this precision. There’s probably no realistic use for this function, which computes 
volume values to an arbitrary precision, but it illustrates the point that with smaller and smaller 
dt values, our volume approximation converges to the exact value of the volume function. The 
result it is converging to is called the integral of the flow rate. 

8.5.4 Definite and indefinite integrals 

In the last two sections, we integrated the flow rate function to obtain the volume function. Like 
taking a derivative, finding an integral is a general procedure that you can do with functions. 
We can integrate any function specifying a rate of change to get a function giving a compatible, 
cumulative value. If we know the speed of a car as a function of time, for example, we can 
integrate it to get the distance traveled as a function of time. In this section, we look at two 
types of integrals: definite integrals and indefinite integrals. 

A definite integral tells you the total change in a function on some interval from its derivative 
function. The function and a pair of start and end values for the argument, which in our case is 
time, specify the definite integral. The output is a single number, which gives the cumulative 
change. For instance, if f(x) is our function of interest and f’(x) is the derivative of f(x), then the 
change in f from x = a to x = b is f(b) − f(a), and it can be found by taking a definite integral 
(figure 8.30). 

 
Figure 8.30: The definite integral takes the rate of change (derivative) of a function and a specified interval and 
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recovers the cumulative change in the function on that interval. 

In calculus, the definite integral of f’(x) from x = a to x = b is written like this: 

 
and its value is f(b) − f(a). The big ∫ symbol is the integral symbol, a and b are called the 
bounds of integration, f’(x) is the function being integrated, and dx indicates that the integral is 
being taken with respect to x. 

Our volume_change function approximates definite integrals, and as we saw in section 8.4.3, it 
also approximates the area under the flow rate graph. It turns out that the definite integral of 
a function on an interval is equal to the area under the rate graph on that interval. For most 
rate functions you meet in the wild, the graphs will be nice enough that you can approximate 
the area underneath them with skinnier and skinnier rectangles, and your approximations will 
converge to a single value. 

After taking a definite integral, let’s look at an indefinite integral. The indefinite integral takes 
the derivative of a function and recovers the original function. For instance, if you know that 
f’(x) is the derivative of f(x), then to reconstruct f(x), you have to find the indefinite integral of 
f’(x). 

The catch is that the derivative f’(x) on its own is not enough to reconstruct the original function 
f(x). As we saw with get_volume_function, which computed a definite integral, you need to 
know an initial value of f(x), like f(0) for instance. The value of f(x) can then be found by adding 
a definite integral to f(0). Because  

 
we can get any value of f(x) as:  

 
Note we have to use a different name t for the argument of f because x becomes a bound of 
integration here. The indefinite integral of a function f’(x) is written as 
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which looks like a definite integral but without specified bounds. If, for example, g(x) = ∫ f(x) 
dx, then g(x) is said to be an antiderivative of f(x). Antiderivatives are not unique, and in fact, 
there is a different function g(x) whose derivative is f(x) for any initial value g(0) that you 
choose. 

This is a lot of terminology to absorb in a short time, but fortunately, we spend the rest of the 
second part of this book reviewing it. We’ll continue to work with functions and their rates of 
change using derivatives and integrals to switch between them interchangeably. 

8.6 Summary 
• The average rate of change in a function, say f(x), is the change in the value of f on some 

x interval divided by the length of the interval. For instance, the average rate of change 
in f(x) from x = a to x = b is  

 
• The average rate of change in a function can be pictured as the steepness of a secant 

line, a line passing through the graph of the function at two points. 
• Zooming in on the graph of a smooth function, it appears indistinguishable from a straight 

line. The line it looks like is the best linear approximation for the function in that area, 
and its slope is called the derivative of the function.  

• You can approximate the derivative by taking the slopes of secant lines on successively 
smaller intervals containing the point. This approximates the instantaneous rate of 
change in the function at the point of interest. 

• The derivative of a function is another function that tells you the instantaneous rate of 
change at every point. You can plot the derivative of a function to see its rate of change 
over time. 

• Starting with a derivative of a function, you can figure out how it changes over time by 
breaking it into brief intervals and assuming the rate is constant on each. If each interval 
is short enough, the rate will be approximately constant and summed to find the total. 
This approximates the definite integral of a function. 

• Knowing the initial value of a function and taking the definite integral of its rate on various 
intervals, you can reconstruct the function. This is called the indefinite integral of the 
function. 
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Simulating moving objects  

This chapter covers 

• Implementing Newton’s laws of motion in code to simulate realistic motion 
• Calculating velocity and acceleration vectors 
• Using Euler’s method to approximate the position of a moving object 
• Finding the exact trajectory of a moving object with calculus 

Our asteroid game from chapter 7 was functional but not that challenging. In order to make it 
more interesting, we need the asteroids to actually move! And, to give the player a chance to 
avoid the moving asteroids, we need to make it possible to move and steer the spaceship as 
well. 

To implement motion in the asteroid game, we’ll use many of the same calculus concepts from 
chapter 8. The numerical quantities we’ll consider are the x and the y positions of the asteroids 
and of the spaceship. If we want the asteroids to move, these values are different at different 
points in time, so we can consider them to be functions of time: x(t) and y(t). The derivative of 
a position function with respect to time is called velocity, and the derivative of velocity with 
respect to time is called acceleration. Because we have two position functions, we have two 
velocity functions and two acceleration functions. This allows us to think of velocities and 
accelerations as vectors as well. 

Our first goal is to get the asteroids moving. For that, we’ll provide random, constant velocity 
functions for the asteroids. Then we’ll integrate these velocity functions in “real time” to get the 
position of each asteroid in each frame using an algorithm called Euler’s method. Euler’s method 
is mathematically similar to the integration we did in chapter 8, but it has the advantage that 
we can carry it out as the game runs. 
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After that, we can allow the user to control the spaceship. When the user presses the up arrow 
on their keyboard, the spaceship should accelerate in the direction it’s pointing. That means the 
derivative of the derivative of each of x(t) and y(t) becomes non-zero; the velocity begins to 
change, and the position starts to change as well. Again, we’ll use Euler’s method to integrate 
the acceleration function and the velocity function in real time. 

Euler’s method is merely an approximation of the integral, and in this application, it’s analogous 
to the Riemann sums from chapter 8. It is possible to calculate the exact positions of the 
asteroids and of the spaceship over time, and I conclude the chapter with a brief comparison of 
the Euler’s method results and the exact solutions. 

9.1 Simulating a constant velocity motion 
In everyday usage, the word velocity is a synonym for the word speed. In math and physics, 
velocity has a special meaning: it includes the concepts of both speed and direction of motion. 
Therefore, velocity will be the concept that we focus on, and we’ll think of it as a vector. 

What we want to do is to give each of the Asteroid objects a random velocity vector, meaning 
a pair of numbers (vx, vy), and interpret these to be the constant values of the derivatives of 
position with respect to time. That is, we assume x’(t) = vx and y’(t) = vy. With that information 
encoded, we can update the game engine so that the asteroids actually move with those 
velocities as the game progresses. 

Because our game is two-dimensional, we work with pairs of positions and pairs of velocities. I 
switch back and forth from talking about x(t) and y(t) as a pair of position functions and x’(t) 
and y’(t) as a pair of velocity functions, and writing them as vector-valued functions: s(t) = 
(x(t), y(t)) and v(t) = (x’(t), y’(t)). This notation just means that s(t) and v(t) are both functions 
that take a time value and return a vector, representing position and velocity, respectively, at 
that time. 

The asteroids already have position vectors, indicated by their x and y properties, but we need 
to give them velocity vectors as well, indicating how fast they are moving in the x and y 
directions. That’s our first step to get them moving frame-by-frame. 

9.1.1 Adding velocities to the asteroids 

To give each asteroid a velocity vector, we can add the two components of the vectors vx and 
vy as properties on the PolygonModel object (in the chapter 9 version of asteroids.py in the 
source code): 

class PolygonModel(): 
    def __init__(self,points): 
        self.points = points #<1> 
        self.angle = 0 
        self.x = 0 
        self.y = 0 
        self.vx = 0 #<2> 
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        self.vy = 0 

#1 The first four properties are kept from the original implementation of this class in chapter 7. 
#2 These vx and vy properties store the current values of vx = x’(t) and vy = y’(t). By default, they are set to 0, meaning 

the object is not moving. 

Next, to make our asteroids move erratically, we can give them random values for the two 
components of their velocities. This means adding two lines at the bottom of the Asteroid 
constructor: 

class Asteroid(PolygonModel): 
    def __init__(self): 
        sides = randint(5,9) 
        vs = [vectors.to_cartesian((uniform(0.5,1.0), 2 * pi * i / sides)) 
                for i in range(0,sides)] 
        super().__init__(vs) #<1> 
        self.vx = uniform(-1,1) #<2> 
        self.vy = uniform(-1,1) 

#1 Up to this line, the code is unchanged from chapter 7; it initializes the asteroid’s shape as a polygon with randomly 
positioned vertices. 

#2 In the last two lines, the x and y velocities are set to random values between -1 and 1. 

Remember, a negative derivative means that a function is decreasing, while a positive value 
means that a function is increasing. The fact that the x and y velocities could be positive or 
negative means that the x and y positions could each either be increasing or decreasing. That 
means our asteroids could be moving to the right or left and upward or downward. 

9.1.2 Updating the game engine to move the asteroids 

The next thing we need to do is use the velocity to update the position. Regardless of whether 
we’re talking about the spaceship, the asteroids, or some other PolygonModel objects, the 
velocity components vx and vy tell us how to update the position components x and y. 

If some time Δt elapses between frames, we update x by vx * Δt and y by vy * Δt. (The symbol 
Δ is the capital Greek letter delta, often used to indicate a change in a variable). This is the 
same approximation we use to find a small change in volume from a small change in flow rate 
in chapter 8. In this case, it is better than an approximation because the velocities are constant, 
the velocity times the elapsed time gives the change in position. 

We can add a move method to the PolygonModel class that updates an object’s position based 
on this formula. The only thing that the object won’t be intrinsically aware of is the elapsed time, 
so we pass that in (in milliseconds): 

class PolygonModel(): 
    ... 
    def move(self, milliseconds): 
        dx, dy = (self.vx * milliseconds / 1000.0,  

                  self.vy * milliseconds / 1000.0 #<1> 
        self.x, self.y = vectors.add((self.x,self.y),  

                                     (dx,dy)) #<2> 
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#1 The change in x position is called dx, and the change in y position is called dy. Both are calculated by multiplying the 
asteroid’s velocity by the elapsed time in seconds. 

#2 Completes the movement for the frame, updating the positions by adding the respective changes dx and dy 

This is a first, simple application of an algorithm called Euler’s method. The algorithm consists 
of keeping track of the value of one or more functions (in our case, the positions x(t) and y(t) 
as well as their derivatives x’(t) = vx and y’(t) = vy) and updating the functions according to 
their derivatives in each step. This works perfectly if the derivatives are constant, but it is still 
a fairly good approximation if the derivatives are themselves changing. When we turn our 
attention to the spaceship, we’ll deal with changing velocity values and update our 
implementation of Euler’s method. 

9.1.3 Keeping the asteroids on the screen 

We can add one more small feature to improve the gameplay experience. An asteroid with a 
random velocity is bound to drift off the screen at some point. To keep the asteroids within the 
screen area, we can add some logic to keep both coordinates between the minimum and 
maximum values of -10 and 10. When, for instance, the x property increases from 10.0 to 10.1, 
we subtract 20 so it becomes an acceptable value of -9.9. This has the effect of “teleporting” 
the asteroid from the right side of the screen to the left. This game mechanic has nothing to do 
with physics, but makes the game more interesting by keeping the asteroids in play (figure 9.1). 

 
Figure 9.1: Keeping all objects’ coordinates between -10 and 10 by “teleporting” the objects across the screen 
when they are about to leave it 

Here’s the teleportation code: 

class PolygonModel(): 
    ... 
    def move(self, milliseconds): 
        dx, dy = (self.vx * milliseconds / 1000.0,  

                  self.vy * milliseconds / 1000.0) 
        self.x, self.y = vectors.add((self.x,self.y),  

                                     (dx,dy)) 
        if self.x < -10: 
            self.x += 20 #<1> 
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        if self.y < -10: #<2> 
            self.y += 20 
        if self.x > 10: 
            self.x -= 20 
        if self.y > 10: 
            self.y -=20 

#1 If x < -10, the asteroid drifts off the left side of the screen, so we add 20 units to the x position to teleport it to the 
right side of the screen. 

#2 If y < -10, the asteroid drifts off the bottom of the screen, so we add 20 units to the y position to teleport it to the top 
of the screen. 

Finally, we need to call the move method for every asteroid in play. To do that, we need the 
following lines within our game loop before the drawing begins: 

milliseconds = clock.get_time() #1 
for ast in asteroids: 
    ast.move(milliseconds) #2 

#1 Figures out how many milliseconds have elapsed since the last frame 
#2 Signals all of the asteroids to update their position based on their velocity 

It’s unremarkable when printed on this page, but when you run the code yourself, you’ll see the 
asteroids move randomly about the screen, each in a random direction. But if you focus on an 
asteroid, you’ll see that its motion isn’t random; it changes position by the same distance in the 
same direction in each passing second (figure 9.2). 

 
Figure 9.2: With the preceding code included, each asteroid moves with a random, constant velocity. 

With asteroids that move, the ship is now in danger—it needs to move to avoid them. But even 
moving at a constant velocity won’t save the ship as it will likely run into an asteroid at some 
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point. The player needs to change the velocity of the ship, meaning both its speed and its 
direction. Next, we look at how to simulate change in velocity, which is known as acceleration. 

9.1.4 Exercises 

 
Exercise 9.1: An asteroid has the velocity vector v = (vx, vy) = (-3, 1). Which direction is it moving on the screen? 
a. Up and to the right 
b. Up and to the left 
c. Down and to the left 
d. Down and to the right 
Solution: Because x’(t) = vx = -3 at this moment in time, the asteroid is moving in the negative x direction, or to the left. 
Because y’(t) = vy = 1, the asteroid is moving in the positive y direction at this moment, which is upward. Therefore, 
answer b is correct. 
 

9.2 Simulating acceleration 
Let’s imagine our spaceship is equipped with a thruster that burns rocket fuel, and the expanding 
gasses push the spaceship in the direction it’s pointed (figure 9.3). 

 
Figure 9.3: Schematic of how a rocket propels itself 

We’ll assume that when the rocket is firing its thruster, it accelerates at a constant rate in the 
direction it’s pointed. Because acceleration is defined as the derivative of velocity, constant 
acceleration values mean that the velocities change at a constant rate in both directions with 
respect to time. When acceleration is nonzero, the velocities vx and vy are not constant; they 
are the functions vx(t) and vy(t) that change over time. Our assumption that acceleration is 
constant means that there are two numbers, ax and ay, so that v’x(t) = ax and v’y(t) = ay. 

Our goal is to give the Python spaceship a pair of properties representing ax and ay and to have 
it accelerate and move across the screen according to those values. When the user is not 
pressing any buttons, the spaceship should have zero acceleration in both directions, and when 
the user presses the up arrow key, the acceleration values should instantly be updated so that 
(ax, ay) is a non-zero vector pointing in the direction the spaceship is headed. While the user 
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holds down the up arrow key, the spaceship’s velocity and position should both change 
realistically, causing it to move frame-by-frame. 

9.2.1 Accelerating the spaceship 

Regardless of the direction the spaceship is pointing, we want it to appear to accelerate at the 
same rate. That means that while the thruster is firing, the magnitude of the vector (ax, ay) 
should have a fixed value. By trial and error, I discovered that an acceleration magnitude of 3 
makes the ship sufficiently maneuverable. Let’s include this constant in our game code: 

acceleration = 3 

Thinking of the distance units in our game as meters, this represents a value of 3 meters per 
second per second (m/s/s). If the spaceship starts at a standstill and the player holds down the 
up arrow key, the spaceship increases its speed by 3 m/s every second in the direction it’s 
pointing. PyGame works in milliseconds, so the relevant speed change will be 0.003 m/s every 
millisecond, or 0.003 meters per second per millisecond. 

Let’s figure out how to calculate the acceleration vector (ax, ay) while the up arrow key is 
pressed. If the ship is pointing at a rotation angle θ, then we need to use trigonometry to find 
the vertical and horizontal components of the acceleration from the magnitude |a| = 3. By the 
definition of sine and cosine, the horizontal and vertical components are |a| * cos(θ) and |a| * 
sin(θ), respectively (figure 9.4). In other words, the acceleration vector is the pair of 
components (|a| * cos(θ), |a| * sin(θ)). Incidentally, you could also use the from_polar function 
we wrote in chapter 2 to get these components from the magnitude and direction of acceleration. 

 
Figure 9.4: Using trigonometry to find the components of acceleration from its magnitude and direction 

During each iteration of the game loop, we can update the velocity of the ship before it moves. 
Over an elapsed time Δt, the update to vx will be ax * Δt and the update to vy will be ay * Δt. 
In code, we need to add the appropriate changes in velocity to the ship’s vx and vy properties: 

while not done: 
    ... 
        if keys[pygame.K_UP]: #<1> 
            ax = acceleration * cos(ship.rotation_angle) #<2> 
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            ay = acceleration * sin(ship.rotation_angle) 
            ship.vx += ax * milliseconds/1000 #<3> 
            ship.vy += ay * milliseconds/1000 
 
        ship.move(milliseconds) #<4> 

#1 Detects whether the up arrow key is pressed 
#2 Calculates the values of ax and ay based on the fixed magnitude of acceleration and the angle the ship is pointing 
#3 Updates the x and y velocities by ax * Δt and ay * Δt, respectively 
#4 Moves the spaceship, using the updated velocities to update positions 

That’s it! With this added code, the spaceship should accelerate when you press the up arrow. 
The code to rotate the spaceship with the left and right arrow keys is similar and included in the 
source code, but I won’t go into it here. With the left, right, and up arrow functionality 
implemented, you can point the ship in whatever direction to accelerate when you want to avoid 
asteroids. 

This is a slightly more advanced application of Euler’s method where we have second 
derivatives: x’’(t) = v’x(t) = ax and y’’(t) = v’y(t) = ay. At each step, we first update the 
velocities, then we use the updated velocities in the move method to determine the updated 
positions. We’re done with our game programming for this chapter, but in the next sections, we 
take a closer look at Euler’s method and evaluate how well it approximates motion. 

9.3 Digging deeper into Euler’s method 
The core idea of Euler’s method is to start with an initial value of a quantity (like position) and 
an equation describing its derivatives (like velocity and acceleration). The derivatives then tell 
us how to update the quantity. Let’s review how we did this by walking through an example, 
one step at a time. 

Say an object starts at time t = 0 at position (0, 0) with an initial velocity (1, 0) and a constant 
acceleration (0, 0.2). (For notational clarity, I’ll leave out units in this section, but you can 
continue to think in seconds, meters, meters per second, and so on.) This initial velocity points 
in the positive x direction, and the acceleration points in the positive y direction. This means if 
we look at the plane, the object starts by moving directly to the right, but it veers upward over 
time. 

Our task is to find the values of the position vector every two seconds from t = 0 to t = 10 using 
Euler’s method. First, we’ll do it by hand and then we’ll do the identical computation in Python. 
Equipped with the resulting positions, we’ll draw them in the x,y plane to show the path the 
spaceship follows. 

9.3.1 Carrying out Euler’s method by hand 

We will continue to think of position, velocity, and acceleration as functions of time: at any given 
time, the object will have some vector value for each of these quantities. I’ll call these vector-
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valued functions: s(t), v(t) and a(t) where s(t) = (x(t), y(t)), v(t) = (x’(t), y’(t)), and a(t) = 
(x’’(t), y’’(t)). Here are the initial values given in a table at time t = 0: 

 
In our asteroid game, PyGame dictated how many milliseconds elapsed between each calculation 
of position. In this example, to make it quick, let’s reconstruct the position from time t = 0 to t 
= 10 in 2-second increments. The table we need to complete is as follows: 

 
I already filled out the acceleration column for us because we’ve stipulated that the acceleration 
is constant. What happens in the 2-second period between t = 0 and t = 2? The velocities change 
according to the acceleration as calculated in the following pair of equations. In these equations, 
we again use the Greek letter Δ (delta) to mean the change in a variable on the interval we’re 
considering. For instance, Δt is the change in time, so Δt = 2 seconds for each of the 5 intervals. 
The velocity components at time 2 are therefore: 

 

 
The new vector value of the velocity at time t = 2 is v(2) = (vx(2), vy(2)) = (1, 0.4). The 
position changes as well, according to the velocity v(0): 

 

 
Its updated value is s = (x, y) = (2, 0). That gives us the second row of the table: 
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Between t = 2 and t = 4, the acceleration stays the same so the velocity increases by the same 
amount, a * Δt = (0, 0.2) * 2 = (0, 0.4), to a new value, v(4) = (1, 0.8). The position increases 
according to the velocity v(2): 

 
This increases the position to s(4) = (4, 0.8). We now have three rows of the table completed, 
and we’ve calculated two of the five positions we wanted: 

 
We could keep going like this, but it will be more pleasant if we let Python do the work for us—
that’s our next step. But first, let’s pause for a moment. I’ve taken us through quite a bit of 
arithmetic in the past few paragraphs. Did any of my assumptions seem suspect to you? I’ll give 
you a hint: it’s not quite legal to use the equation Δs = v * Δt as I did here, so the positions in 
the table are only approximately correct. If you don’t see where I snuck in approximations yet, 
don’t worry. It will be clear soon, once we’ve plotted the position vectors on a graph. 

9.3.2 Implementing the algorithm in Python 

Describing this procedure in Python isn’t too much work. We first need to set the initial values 
of time, position, velocity, and acceleration: 

t = 0 
s = (0,0) 
v = (1,0) 
a = (0,0.2) 
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The other values we need to specify are the moments in time we’re interested in: 0, 2, 4, 6, 8, 
and 10 seconds. Rather than list all of these, we can use the fact that t = 0 to begin with and 
specify a constant Δt = 2 for each time step with 5 time steps in total: 

dt = 2 
steps = 5 

Finally, we need to update time, position, and velocity once for every time step. As we go, we 
can store the positions in an array for later use: 

from vectors import add, scale 
positions = [s] 
for _ in range(0,5): 
    t += 2 
    s = add(s, scale(dt,v)) #1 
 

    v = add(v, scale(dt,a)) #2 
    positions.append(s) 

#1 Updates the position by adding the change in position Δs = v*Δt to the current position s. (I used the scale and add 
functions from chapter 2.) 

#2 Updates the velocity by adding the change in velocity Δv = a*Δt to the current velocity v 

If we run this code, the positions list is populated with six values of the vector s, corresponding 
to the times t = 0, 2, 4, 6, 8, 10. Now that we have the values in code, we can plot them and 
picture the object’s motion. If we plot them in 2D using the drawing module from chapters 2 
and 3, we can see the object initially moving to the right and then veering upward as expected 
(figure 9.5). Here’s the Python code, and the plot it generates: 

from draw2d import * 
draw2d(Points2D(*positions)) 

 
Figure 9.5: Points on the object’s trajectory according to our calculation with Euler’s method 
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In our approximation, it’s as if the object moved in five straight lines at a different velocity on 
each of the five time intervals (figure 9.6). 

 
Figure 9.6: The five displacement vectors connecting the points on the trajectory by straight lines. 

The object is supposed to be accelerating the whole time, so you might expect it to move in a 
smooth curve instead of in straight lines. Now that we have Euler’s method implemented in 
Python, we can quickly rerun it with different parameters to assess the quality of the 
approximation. 

9.4 Running Euler’s method with smaller time steps 
We can rerun the calculation again using twice as many time steps by setting dt = 1 and steps 
= 10. This still simulates 10 seconds of motion, but instead, models it with 10 straight line paths 
(figure 9.7). 
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Figure 9.7: Euler’s method produces different results with the same initial values and different numbers of 
steps. 

Trying again with 100 steps and dt = 0.1, we see yet another trajectory in the same 10 seconds 
(figure 9.8). 

 
Figure 9.8: With 100 steps instead of 5 or 10, we get yet another trajectory. Dots are omitted for this trajectory 
because there are so many of them. 
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Why do we get different results even though the same equations went into all three calculations? 
It seems like the more time steps we use, the bigger the y-coordinates get. We can see the 
problem if we look closely at the first two seconds.  

In the 5-step approximation, there’s no acceleration; the object is still traveling along the x-
axis. In the 10-step approximation, the object has had one chance to update its velocity, so it 
has risen above the x-axis. Finally, the 100-step approximation has 19 velocity updates between 
t = 0 and t = 1, so its velocity increase is the largest (figure 9.9). 

 
Figure 9.9: Looking closely at the first two segments, the 100-step approximation is the largest because its 
velocity updates most frequently. 

This is what I swept under the rug earlier. The equation Δs = v * Δt is only correct when velocity 
is constant. Euler’s method is a good approximation when you use a lot of time steps because 
on smaller time intervals, velocity doesn’t change that much. To confirm this, you can try some 
large time steps with small values for dt. For example, with 100 steps of 0.1 seconds each, the 
final position is  

(9.99999999999998, 9.900000000000006) 

and with 100,000 steps of 0.0001 seconds each, the final position is 

(9.999999999990033, 9.999899999993497) 

The exact value of the final position is (10.0, 10.0), and as we add more and more steps to our 
approximation with Euler’s method, our results appear to converge to this value. You’ll have to 
trust me for now that (10.0, 10.0) is the exact value. We’ll cover how to do exact integrals in 
the next chapter to prove it. Stay tuned! 
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9.4.1 Exercises 

 
Mini-project 9.2: Create a function that carries out Euler’s method automatically for a constantly accelerating object. 
You need to provide the function with an acceleration vector, initial velocity vector, initial position vector, and perhaps 
other parameters. 
Solution: I also included the total time and number of steps as parameters to make it easy to test various answers in 
the solution. 
def eulers_method(s0,v0,a,total_time,step_count): 

    trajectory = [s0] 

    s = s0 

    v = v0 

    dt = total_time/step_count #<1> 

    for _ in range(0,step_count): 

        s = add(s,scale(dt,v)) #<2> 

        v = add(v,scale(dt,a)) 

        trajectory.append(s) 

    return trajectory 

#1 The duration of each time step dt is the total time elapsed divided by the number of time steps. 
#2 For each step, updates the position and velocity and adds the latest position as the next position in the trajectory 
(list of positions) 
 

 
Mini-project 9.3: In the calculation of section 9.4, we under approximated the y-coordinate of position because we 
updated the y component of the velocity at the end of each time interval. Update the velocity at the beginning of each 
time interval and show that you over approximate the y position over time. 
Solution: We can tweak our implementation of the eulers_method function from mini-project 9.2 with the only 
modification being switching the update order of s and v: 
def eulers_method_overapprox(s0,v0,a,total_time,step_count): 

    trajectory = [s0] 

    s = s0 

    v = v0 

    dt = total_time/step_count 

    for _ in range(0,step_count): 

        v = add(v,scale(dt,a)) 

        s = add(s,scale(dt,v)) 

        trajectory.append(s) 

    return trajectory 

With the same inputs, this indeed gives a higher approximation of the y-coordinate than the original implementation. If 
you look closely at the trajectory in the following figure, you can see it is already moving in the y direction in the first 
time step. 
eulers_method_overapprox((0,0),(1,0),(0,0.2),10,10) 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
The original Euler’s method trajectory and the new one. The exact trajectory is shown in black for comparison. 
 

 
Mini-project 9.4: Any projectile like a thrown baseball, a bullet, or an airborne snowboarder experiences the same 
acceleration vector: 9.81 m/s/s toward the earth. If we think of the x-axis of the plane as flat ground with the positive y-
axis pointing upward, that amounts to an acceleration vector of (0, 9.81). If a baseball is thrown from shoulder height at 
x = 0, we could say its initial position is (0, 1.5). Assume it’s thrown at an initial speed of 30 m/s at an angle of 20° up 
from the positive x direction and simulate its trajectory with Euler’s method. Approximately how far does the baseball 
go in the x direction before hitting the ground? 
Solution: The initial velocity is (30 * cos(20°), 30 * sin(20°)). We can use the eulers_method function from mini-
project 9.2 to simulate the baseball’s motion over a few seconds: 
from math import pi,sin,cos 

angle = 20 * pi/180 

s0 = (0,1.5) 

v0 = (30*cos(angle),30*sin(angle)) 

a = (0,-9.81) 

 

result = eulers_method(s0,v0,a,3,100) 
Plotting the resulting trajectory, this figure shows that the baseball makes an arc in the air before returning to the earth 
at about the 67-meter mark on the x-axis. The trajectory continues underground because we didn’t tell it to stop. 
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Mini-project 9.5: Rerun the Euler’s method simulation from the previous mini-project with the same initial speed of 30 
but using an initial position of (0, 0) and trying various angles for the initial velocity. What angle makes the baseball go 
the farthest before hitting the ground? 
To simulate different angles, you can package this code as a function. Using a new starting position of (0, 0), you can 
see various trajectories in the following figure. It turns out that the baseball makes it the farthest at an angle of 45°. 
(Notice that I’ve filtered out the points on the trajectory with negative y components to consider only the motion before 
the baseball hits the ground.) 
def baseball_trajectory(degrees): 

    radians = degrees * pi/180 

    s0 = (0,0) 

    v0 = (30*cos(radians),30*sin(radians)) 

    a = (0,-9.81) 

    return [(x,y) for (x,y) in eulers_method(s0,v0,a,10,1000) if y>=0] 
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Throwing a baseball at 30 m/s at various angles 
 

 
Mini-project 9.6: An object moving in 3D space has an initial velocity of (1, 2, 0) and has a constant acceleration vector 
of (0, -1, 1). If it starts at the origin, where is it after 10 seconds? Plot its trajectory in 3D using the drawing functions 
from chapter 3. 
Solution: It turns out our eulers_method implementation can already handle 3D vectors! The figure following the 
code snippet shows the trajectory in 3D. 
from draw3d import * 

traj3d = eulers_method((0,0,0), (1,2,0), (0,-1,1), 10, 10) 

draw3d( 

    Points3D(*traj3d) 

) 

 
Running with 1,000 steps for improved accuracy, we can find the last position: 
>>> eulers_method((0,0,0), (1,2,0), (0,-1,1), 10, 1000)[-1] 

(9.999999999999831, -29.949999999999644, 49.94999999999933) 
It’s close to (10, -30, 50), which turns out to be the exact position. 
 

9.5 Summary 
• Velocity is the derivative of position with respect to time. It is a vector consisting of the 

derivatives of each of the position functions. In 2D, with position functions x(t) and y(t), 
we can write the position vector as a function s(t) = (x(t), y(t)) and the velocity vector 
as a function v(t) = (x’(t), y’(t)). 

• In a video game, you can animate an object moving at a constant velocity by updating 
its position in each frame. Measuring the time between frames and multiplying it by the 
object’s velocity gives you the change in position for the frame. 

• Acceleration is the derivative of velocity with respect to time. It is a vector whose 
components are the derivatives of the components of velocity; for instance, a(t) = (v’x(t), 
v’y(t)). 
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• To simulate an accelerating object in a video game, you need to not only update the 
position with each frame but also update the velocity. 

• If you know the rate at which a quantity changes with respect to time, you can compute 
the value of a quantity itself over time by calculating the quantity’s change over many 
small time intervals. This is called Euler’s method. 
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Working with symbolic 

expressions 

This chapter covers 

• Modeling algebraic expressions as data structures 
• Writing code to analyze, transform, or evaluate algebraic expressions 
• Finding the derivative of a function by manipulating the expression that defines it 
• Writing a Python function for automatic derivatives 
• Using the SymPy library for automatic integrals 

If you followed all of the code examples and did all the exercises in chapter 8 and chapter 9, 
you already have a solid grasp of the two most important concepts in calculus: the derivative 
and the integral. First, you learned how to approximate the derivative of a function at a point 
by taking slopes of smaller and smaller secant lines. You also learned how to approximate an 
integral by estimating the area under a graph with skinny rectangles. Lastly, you learned how 
to do calculus with vectors by simply doing the relevant calculus operations in each coordinate. 

It might seem like an audacious claim, but I really do hope to have given you the most important 
concepts you’d learn in a year-long college calculus class in just a few chapters of this book. 
Here’s the catch: because we’re working in Python, I’m skipping the most laborious piece of a 
traditional calculus course, which is doing a lot of formula manipulation by hand. This kind of 
work enables you to take the formula for a function like f(x) = x3 and figure out an exact formula 
for its derivative, f ′(x). In this case, there’s a simple answer, f ′(x) = 3x2, as shown in figure 
10.1. 
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Figure 10.1: The derivative of the function f(x) = x3 has an exact formula, namely f ′(x) = 3x2. 

There are infinitely many formulas you might want to know the derivative of, and you can’t 
memorize derivatives for all of them, so what you end up doing in a calculus class is learning a 
small set of rules and how to systematically apply them to transform a function into its 
derivative. By and large, this isn’t that useful of a skill for a programmer. If you want to know 
the exact formula for a derivative, you can use a specialized tool called a computer algebra 
system to compute it for you. 

10.0.1 Finding an exact derivative with a computer algebra system 

One of the most popular computer algebra systems is called Mathematica, and you can use its 
engine for free online at a website called Wolfram Alpha (wolframalpha.com). In my experience, 
if you want an exact formula for a derivative for a program you’re writing, the best approach is 
to consult Wolfram Alpha. For instance, when we build a neural network in chapter 16, it will be 
useful to know the derivative of the function: 

To find a formula for the derivative of this function, you can simply go to wolframalpha.com and 
enter the formula in the input box (figure 10.2). Mathematica has its own syntax for 
mathematical formulas, but Wolfram Alpha is impressively forgiving and understands most 
simple formulas that you enter (even in Python syntax!). 

Figure 10.2: Entering a function in the input box at wolframalpha.com 
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When you press Enter, the Mathematica engine powering Wolfram Alpha computes a number of 
facts about this function, including its derivative. If you scroll down, you’ll see a formula for the 
derivative of the function (figure 10.3). 

Figure 10.3: Wolfram Alpha reports a formula for the derivative of the function. 

For our function f(x), its instantaneous rate of change at any value of x is given by: 

If you understand the concept of a “derivative” and of an “instantaneous rate of change,” 
learning to punch formulas into Wolfram Alpha is a more important skill than any other single 
skill you’ll learn in a calculus class. I don’t mean to be cynical; there’s plenty to learn about the 
behavior of specific functions by taking their derivatives by hand. It’s just that in your life as a 
professional software developer, you’ll probably never need to figure out the formula for a 
derivative or integral when you have a free tool like Wolfram Alpha available. 

That said, your inner nerd may be asking, “How does Wolfram Alpha do it?” It’s one thing to 
find a crude estimate of a derivative by taking approximate slopes of the graph at various points, 
but it’s another to produce an exact formula. Wolfram Alpha successfully interprets the formula 
you type in, transforms it with some algebraic manipulations, and outputs a new formula. This 
kind of approach, where you work with formulas themselves instead of numbers, is called 
symbolic programming. 

The pragmatist in me wants to tell you to “just use Wolfram Alpha,” while the math enthusiast 
in me wants to teach you how to take derivatives and integrals by hand, so in this chapter I’m 
going to split the difference. We do some symbolic programming in Python to manipulate 
algebraic formulas directly and, ultimately, figure out the formulas for their derivatives. This 
gets you acquainted with the process of finding derivative formulas, while still letting the 
computer do most of the work for you. 

10.0.2 Doing symbolic algebra in Python 

Let me start by showing you how we’ll represent and manipulate formulas in Python. Say we 
have a mathematical function like: 

f(x) = (3x2 + x) sin(x) 
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The usual way to represent it in Python is as follows: 

from math import sin 
def f(x): 
    return (3*x**2 + x) * sin(x) 

While this Python code makes it easy to evaluate the formula, it doesn’t give us a way to 
compute facts about the formula. For instance, we could ask 

• Does the formula depend on the variable x?
• Does it contain a trigonometric function?
• Does it involve the operation of division?

We can look at these questions and quickly decide that the answers are yes, yes, and no. There’s 
no simple, reliable way to write a Python program to answer these questions for us. For instance, 
it’s difficult, if not impossible, to write a function contains_division(f) that takes the function
f and returns true if it uses the operation of division in its definition. 

Here’s where this would come in handy. In order to invoke an algebraic rule, you need to know 
what operations are being applied and in what order. For instance, the function f(x) is a product 
of sin(x) with a sum, and there’s a well-known algebraic process for expanding a product of a 
sum as visualized in figure 10.4. 

Figure 10.4: Because (3x2+x) sin(x) is a product of a sum, it can be expanded. 

Our strategy is to model algebraic expressions as data structures rather than translating them 
directly to Python code, and then they’re more amenable to manipulation. Once we can 
manipulate functions symbolically, we can automate the rules of calculus. 

In the last chapter, you learned that the derivative of x3 is 3x2. By the time we’re done in this 
chapter, you’ll be able to write a Python function that takes an algebraic expression and gives 
you an expression for its derivative. Our data structure for an algebraic formula will be able to 
represent variables, numbers, sums, differences, products, quotients, powers, and special 
functions like sine and cosine. If you think about it, we can represent a huge variety of different 
formulas with that handful of building blocks, and our derivative will work on all of them (figure 
10.5). 
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Figure 10.5: A goal is to write a derivative function in Python that takes an expression for a function and returns 
an expression for its derivative. 

We’ll get started by modeling expressions as data structures instead of functions in Python code. 
Then, to warm up, we can do some simple computations with the data structures to do things 
like plugging in numbers for variables or expanding products of sums. After that, I’ll teach you 
some of the rules for taking derivatives of formulas, and we’ll write our own derivative function 
and perform them automatically on our symbolic data structures. 

10.1 Modeling algebraic expressions 
Let’s focus on the function f(x) = (3x2+x) sin(x) for a bit and see how we can break it down into 
pieces. This is a good example function because it contains a lot of different building blocks: a 
variable x, as well as numbers, addition, multiplication, a power, and a specially-named function, 
sin(x). Once we have a strategy for breaking this function down into conceptual pieces, we can 
translate it into a Python data structure. This data structure is a symbolic representation of the 
function as opposed to a string representation like (3*x**2 + x) * sin(x). 

A first observation is that f is an arbitrary name for this function. For instance, the right-hand 
side of this equation expands the same way regardless of what we call it. Because of this, we 
can focus only on the expression that defines the function, which in this case is (3x2 + x) sin(x). 
This is called an expression in contrast to an equation, which must contain an equals sign (=). 
An expression is a collection of mathematical symbols (numbers, letters, operations, and so on) 
combined in some valid ways. Our first goal, therefore, is to model these symbols and the valid 
means of composing this expression in Python. 

10.1.1 Breaking an expression into pieces 

We can start to model algebraic expressions by breaking them up into smaller expressions. 
There is only one meaningful way to break up the expression (3x2 + x) sin(x). Namely, it’s the 
product of (3x2 + x) and sin(x) as shown in figure 10.6. 
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Figure 10.6: A meaningful way to break up an algebraic expression into two smaller expressions 

By contrast, we can’t split this expression around the plus sign. We could make sense of the 
expressions on either side of the plus sign if we tried, but the result is not equivalent to the 
original expression (figure 10.7). 

 
Figure 10.7: It doesn’t make sense to split the expression up around the plus sign because the original 
expression is not the sum of 3x2 and x · sin(x). 

If we look at the expression 3x2 + x, it can be broken up into a sum: 3x2 and x. Likewise, the 
conventional order of operations tells us that 3x2 is the product of 3 and x2, not 3x raised to the 
power of 2. 

In this chapter, we’ll think of operations like multiplication and addition as ways to take two (or 
more) algebraic expressions and stick them together side by side to make a new, bigger 
algebraic expression. Likewise, operators are valid places to break up an existing algebraic 
expression into smaller ones. 

In the terminology of functional programming, functions combining smaller objects into bigger 
ones like this are often called combinators. Here are some of the combinators implied in our 
expression: 

• 3x2 is the product of the expressions 3 and x2. 
• x2 is a power: one expression x raised to the power of another expression 2. 
• The expression sin(x) is a function application. Given the expression sin and the 

expression x, we can build a new expression sin(x). 

A variable x, a number 2, or a function named sin can’t be broken down further. To distinguish 
these from combinators, we call them elements. The lesson here is that while (3x2 + x) sin(x) 
is just a bunch of symbols printed on this page, the symbols are combined in certain ways to 
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convey some mathematical meaning. To bring this concept home, we can visualize how this 
expression is built from its underlying elements. 

10.1.2 Building an expression tree 

The elements 3, x, 2, and sin, along with the combinators of adding, multiplying, raising to a 
power, and applying a function are sufficient to rebuild the whole of the expression (3x2 + x) 
sin(x). Let’s go through the steps and draw the structure we’ll end up building. One of the first 
constructions we can put together is x2, which combines x and 2 with the power combinator 
(figure 10.8). 

 
Figure 10.8: Combining x and 2 with the power combinator to represent the bigger expression x2 

A good next step is to combine x2 with the number 3 via the product combinator to get the 
expression 3x2 (figure 10.9). 

 
Figure 10.9: Combining the number 3 with a power to model the product 3x2 

This construction is two layers deep: one expression that inputs to the product combinator is 
itself a combinator. As we add more of the terms of the expression, it gets even deeper. The 
next step is adding the element x to 3x2 using the sum combinator (figure 10.10), which 
represents the operation of addition. 
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Figure 10.10: Combining the expression 3x2 with the element x and the sum combinator to get 3x2 + x 

Finally, we need to use the function application combinator to apply sin to x and then the product 
combinator to combine sin(x) with what we’ve built thus far (figure 10.11). 

 
Figure 10.11: A completed picture showing how to build (3x2 + x) sin(x) from elements and combinators. 

You may recognize the structure we’ve built as a tree. The root of the tree is the product 
combinator with two branches coming out of it: Sum and Apply. Each combinator appearing 
further down the tree adds additional branches, until you reach the elements that are leaves 
and have no branches. Any algebraic expression built with numbers, variables, and named 
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functions as elements and operations that are combinators correspond to a distinctive tree that 
reveals its structure. The next thing we can do is to build the same tree in Python. 

10.1.3 Translating the expression tree to Python 

When we’ve built this tree in Python, we’ll have achieved our goal of representing the expression 
as a data structure. I’ll use Python classes, covered in appendix B, to represent each kind of 
element and each combinator. As we go, we’ll revise these classes to give them more and more 
functionality. You can follow the walk-through Jupyter notebook for chapter 10 if you want to 
follow the text, or you can skip to a more complete implementation in the Python script file 
expressions.py. 

In our implementation, we model combinators as containers that hold all of their inputs. For 
instance, a power x to the 2, or x2, has two pieces of data: the base x and the power 2. Here’s 
a Python class that’s designed to represent a power expression: 

class Power(): 
    def __init__(self,base,exponent): 
        self.base = base 
        self.exponent = exponent 

We could then write Power("x",2) to represent the expression x2. But rather than using raw 
strings and numbers, I’ll create special classes to represent numbers and variables. For example, 

class Number(): 
    def __init__(self,number): 
        self.number = number 
 
class Variable(): 
    def __init__(self,symbol): 
        self.symbol = symbol 

This might seem like unnecessary overhead, but it will be useful to be able to distinguish 
Variable("x"), which means the letter x considered as a variable from the string "x", which is 
merely a string. Using these three classes, we can model the expression x2 as: 

Power(Variable("x"),Number(2)) 

Each of our combinators can be implemented as an appropriately named class that stores the 
data of whatever expressions it combines. For instance, a product combinator can be a class 
that stores two expressions that are meant to be multiplied together: 

class Product(): 
    def __init__(self, exp1, exp2): 
        self.exp1 = exp1 
        self.exp2 = exp2 

The product 3x2 can be expressed using this combinator: 

Product(Number(3),Power(Variable("x"),Number(2))) 
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After introducing the rest of the classes we need, we can model the original expression as well 
as an infinite list of other possibilities. (Note that we allow any number of input expressions for 
the Sum combinator, and we could have done this for the Product combinator as well. I restricted 
the Product combinator to two inputs to keep our code simpler when we start calculating 
derivatives in section 10.3.) 

class Sum(): 
    def __init__(self, *exps): #<1> 
        self.exps = exps 
 
class Function(): #<2> 
    def __init__(self,name): 
        self.name = name 
 
class Apply(): #<3> 
    def __init__(self,function,argument): 
        self.function = function 
        self.argument = argument 
 
f_expression = Product( #<4> 
                Sum( 
                    Product( 
                        Number(3), 
                        Power( 
                            Variable("x"), 
                            Number(2))),  
                    Variable("x")),  
                Apply( 
                    Function("sin"), 
                    Variable("x"))) 

#1 Allows a Sum of any number of terms so we can add two or more expressions together 
#2 Stores a string that is the function’s name (like sin) 
#3 Stores a function and the argument it is applied to 
#4 I use extra whitespace to make the structure of the expression clearer to see. 

This is a faithful representation of the original expression (3x2 + x) sin(x). By that I mean, we 
could look at this Python object and see that it describes the algebraic expression and not a 
different one. For another expression like 

Apply(Function("cos"),Sum(Power(Variable("x"),Number("3")), Number(-5))) 

we can read it carefully and see that it represents a different expression: cos(x3 + -5). In the 
exercises that follow, you can practice translating some algebraic expressions to Python and 
vice versa. You’ll see it can be tedious to type out the whole representation of an expression. 
The good news is that once you get it encoded in Python, the manual work is over. In the next 
section, we see how to write Python functions to automatically work with our expressions. 
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10.1.4 Exercises 

 
Exercise 10.1: You may have met the natural logarithm, a special mathematical function written ln(x). Draw the 
expression ln(yz) as a tree built from the elements and combinators described in the previous section. 
Solution: The outermost combinator is an Apply. The function being applied is ln, the natural logarithm, and the 
argument is yz. In turn, yz is a power with base y and exponent z. The result looks like this: 

 
 

 
Exercise 10.2: Translate the expression from the previous exercise to Python code, given that the natural logarithm is 
calculated by the Python function math.log. Write it both as a Python function and as a data structure built from 
elements and combinators. 
Solution: You can think of ln(yz) as a function of two variables y and z. It translates directly to Python, where ln is called 
log: 

from math import log 

def f(y,z): 

    return log(y**z) 
The expression tree is built like this: 
Apply(Function("ln"), Power(Variable("y"), Variable("z"))) 

 

 
Exercise 10.3: What is the expression represented by 
Product(Number(3),Sum(Variable("y"),Variable("z")))? 
Solution: This expression represents 3 · (y + z). Notice that the parentheses are necessary because of the order of 
operations. 
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Exercise 10.4: Implement a Quotient combinator representing one expression divided by another. How do you represent 
the following expression? 

 
Solution: A Quotient combinator needs to store two expressions: the top expression is called the numerator and the 
bottom is called the denominator: 
class Quotient(): 

    def __init__(self,numerator,denominator): 

        self.numerator = numerator 

        self.denominator = denominator 

The sample expression is the quotient of the sum a + b with the number 2: 
Quotient(Sum(Variable("a"),Variable("b")),Number(2)) 
 

 
Exercise 10.5: Implement a Difference combinator representing one expression subtracted from another. How can you 
represent the expression b2 − 4ac? 
Solution: The Difference combinator needs to store two expressions, and it represents the second subtracted from the 
first: 
class Difference(): 

    def __init__(self,exp1,exp2): 

        self.exp1 = exp1 

        self.exp2 = exp2 
The expression b2 − 4ac is the difference of the expressions b2 and 4ac and is represented as follows: 
Difference( 

    Power(Variable('b'),Number(2)), 

    Product(Number(4),Product(Variable('a'), Variable('c')))) 

 

 
Exercise 10.6: Implement a Negative combinator representing the negation of an expression. For example, the negation 
of x2 + y is -(x2+y). Represent the latter expression in code using your new combinator. 
Solution: The Negative combinator is a class that holds one expression: 
class Negative(): 

    def __init__(self,exp): 

        self.exp = exp 
To negate x2 + y, we pass it to the Negative constructor: 

Negative(Sum(Power(Variable("x"),Number(2)),Variable("y"))) 

 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Exercise 10.7: Add a function called Sqrt that represents a square root and use it to encode the following formula: 

 
Solution: To save some typing, we can name our variables and square root function up front: 
A = Variable('a') 

B = Variable('b') 

C = Variable('c') 

Sqrt = Function('sqrt') 
Then it’s just a matter of translating the algebraic expression into the appropriate structure of elements and 
combinators. At the highest level, you can see this is a quotient of a sum (on top) and a product (on the bottom): 
Quotient( 

    Sum( 

        Negative(B), 

        Apply( 

            Sqrt,  

            Difference( 

                Power(B,Number(2)), 

                Product(Number(4), Product(A,C))))), 

    Product(Number(2), A)) 
 

 
Mini-project 10.8: Create an abstract base class called Expression and make all of the elements and combinators 
inherit from it. For instance, class Variable() would become class Variable(Expression). Then overload 
the Python arithmetic operations +, −, *, and / so that they produce Expression objects. For instance, the code 
2*Variable("x")+3 should yield Sum(Product(Number(2),Variable("x")),Number(3)). 
Solution: See the file expressions.py in the source code for this chapter. 
 

10.2 Putting a symbolic expression to work 
For the function we’ve studied so far, f(x) = (3x2 + x) sin(x), we wrote a Python function that 
computes it: 

def f(x): 
    return (3*x**2 + x)*sin(x) 

As an entity in Python, this function is only good for one thing: returning an output value for a 
given input value x. The value f in Python does not make it particularly easy to programmatically 
answer the questions we asked at the beginning of the chapter: whether f depends on its input, 
whether f contains a trigonometric function, or what the body of f would look like if it were 
expanded algebraically. In this section, we see that once we translate the expression into a 
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Python data structure built from elements and combinators, we can answer all of these questions 
and more! 

10.2.1 Finding all the variables in an expression 

Let’s write a function that takes an expression and returns a list of distinct variables that appear 
in it. For instance, h(z) = 2z + 3 is defined using the input variable z, while the definition of g(x) 
= 7 contains no variables. We can write a Python function, distinct_variables, that takes an 
expression (meaning any of our elements or combinators) and returns a Python set containing 
the variables. 

If our expression is an element, like z or 7, the answer is clear. An expression that is just a 
variable contains one distinct variable, while an expression that is just a number contains no 
variables at all. We expect our function to behave accordingly: 

>>> distinct_variables(Variable("z")) 
{'z'} 
>>> distinct_variables(Number(3)) 
set() 

The situation is more complicated when the expression is built from some combinators like y · 
z + xz. It’s easy for a human to read all the variables, y, z, and x, but how do we extract these 
from the expression in Python? This is actually a Sum combinator representing the sum of y · z 
and xz. The first expression in the sum contains y and z, while the second has x and z. The sum 
then contains all of the variables in these two expressions. 

This suggests we should use a recursive solution: the distinct_variables for a combinator 
are the collected distinct_variables for each of the expressions it contains. The end of the 
line has the variables and numbers, which obviously contain either one or zero variables. To 
implement the distinct_variables function, we need to handle the case of every element and 
combinator that make up a valid expression: 

def distinct_variables(exp): 
    if isinstance(exp, Variable): 
        return set(exp.symbol) 
    elif isinstance(exp, Number): 
        return set() 
    elif isinstance(exp, Sum): 
        return set().union(*[distinct_variables(exp) for exp in exp.exps]) 
    elif isinstance(exp, Product): 
        return 
distinct_variables(exp.exp1).union(distinct_variables(exp.exp2)) 
    elif isinstance(exp, Power): 
        return 
distinct_variables(exp.base).union(distinct_variables(exp.exponent)) 
    elif isinstance(exp, Apply): 
        return distinct_variables(exp.argument) 
    else: 
        raise TypeError("Not a valid expression.") 
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This code looks hairy, but it is just a long if/else statement with one line for each possible 
element or combinator. Arguably, it would be better coding style to add a distinct_variables 
method to each element and combinator class, but that makes it harder to see the logic in a 
single code listing. As expected, our f_expression contains only the variable x: 

>>> distinct_variables(f_expression) 
{'x'} 

If you’re familiar with the tree data structure, you’ll recognize this as a recursive traversal of 
the expression tree. By the time this function completes, it has called distinct_variables on 
every expression contained in the target expression, which are all of the nodes in the tree. That 
ensures that we see every variable and that we get the correct answers that we expect. In the 
exercises at the end of this section, you can use a similar approach to find all of the numbers or 
all of the functions. 

10.2.2 Evaluating an expression 

Now, we’ve got two representations of the same mathematical function f(x). One is the Python 
function f, which is good for evaluating the function at a given input value of x. The new one is 
this tree data structure that describes the structure of the expression defining f(x). It turns out 
the latter representation has the best of both worlds: we can use it to evaluate f(x) as well, with 
only a little more work. 

Mechanically, evaluating a function f(x) at, say, x = 5 means plugging in the value of 5 for x 
everywhere and then doing the arithmetic to find the result. If the expression were just f(x) = 
x, plugging in x = 5 would tell us f(5) = 5. Another simple example would be g(x) = 7, where 
plugging in 5 in place of x has no effect; there are no appearances of x on the right-hand side, 
so the result of g(5) is just 7. 

The code to evaluate an expression in Python is similar to the code we just wrote to find all 
variables. Instead of looking at the set of variables that appear in each subexpression, we need 
to evaluate each subexpression, then the combinators tell us how to combine these results to 
get the value of the whole expression.   

The starting data we need is what values to plug-in and which variables these replace. An 
expression with two different variables like z(x, y) = 2xy3 will need two values to get a result; 
for instance, x = 3 and y = 2. In computer science terminology, these are called variable 
bindings. With these, we can evaluate the subexpression y3 as (2)3, which equals 8. Another 
subexpression is 2x, which evaluates to 2 · (3) = 6. These two are combined with the Product 
combinator, so the value of the whole expression is the product of 6 and 8, or 48. 

As we translate this procedure into Python code, I’m going to show you a slightly different style 
than in the previous example. Rather than having a separate evaluate function, we can add an 
evaluate method to each class representing an expression. To enforce this, we can create an 
abstract Expression base class with an abstract evaluate method and have each kind of 
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expression inherit from it. If you need a review of abstract base classes in Python, take a 
moment to review the work we did with the Vector class in chapter 6 or the overview in appendix 
B. Here’s an Expression base class, complete with an evaluate method: 

from abc import ABC, abstractmethod 
 
class Expression(ABC): 
    @abstractmethod 
    def evaluate(self, **bindings): 
        pass 

Because an expression can contain more than one variable, I set it up so you can pass in the 
variable bindings as keyword arguments. For instance, the bindings {"x":3,"y":2} mean 
substitute 3 for x and 2 for y. This gives us some nice syntactic sugar when evaluating an 
expression. If z represents the expression 2xy3, then once we’re done, we’ll be able to execute 
the following: 

>>> z.evaluate(x=3,y=2) 
48 

So far, we’ve only an abstract class. Now we need to have all of our expression classes inherit 
from Expression. For example, a Number instance is a valid expression as a number on its own, 
like 7. Regardless of the variable bindings provided, a number evaluates to itself: 

class Number(Expression): 
    def __init__(self,number): 
        self.number = number 
    def evaluate(self, **bindings): 
        return self.number 

For instance, evaluating Number(7).evaluate(x=3,y=6,q=-15), or any other evaluation for 
that matter, returns the underlying number 7. 

Handling variables is also simple. If we’re looking at the expression Variable("x"), we only 
need to consult the bindings and see what number the variable x is set to. When we’re done, 
we should be able to run Variable("x").evaluate(x=5) and get 5 as a result. If we can’t find 
a binding for x, then we can’t complete the evaluation, and we need to raise an exception. Here’s 
the updated definition of the Variable class: 

class Variable(Expression): 
    def __init__(self,symbol): 
        self.symbol = symbol 
    def evaluate(self, **bindings): 
        try: 
            return bindings[self.symbol] 
        except: 
            raise KeyError("Variable '{}' is not bound.".format(self.symbol)) 

With these elements handled, we need to turn our attention to the combinators. (Note that we 
won’t consider a Function object an Expression on its own because a function like sin is not a 
standalone expression. It can only be evaluated when it’s given an argument in the context of 
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an Apply combinator.) For a combinator like Product, the rule to evaluate it is simple: evaluate 
both expressions contained in the product and then multiply the results together. No substitution 
needs to be performed in the product, but we’ll pass the bindings along to both subexpressions 
in case either contains a Variable: 

class Product(Expression): 
    def __init__(self, exp1, exp2): 
        self.exp1 = exp1 
        self.exp2 = exp2 
    def evaluate(self, **bindings): 
        return self.exp1.evaluate(**bindings) * self.exp2.evaluate(**bindings) 

With these three classes updated with evaluate methods, we can now evaluate any expression 
built from variables, numbers, and products. For instance, 

>>> Product(Variable("x"), Variable("y")).evaluate(x=2,y=5) 
10 

Similarly, we can add an evaluate method to the Sum, Power, Difference, or Quotient 
combinators (as well as any other combinators you may have created as exercises). Once we 
evaluate their subexpressions, the name of the combinator tells us which operation we can use 
to get the overall result.  

The Apply combinator works a bit differently, so it deserves some special attention. We need to 
dynamically look at a function name like sin or sqrt and figure out how to compute its value. 
There are a few possible ways to do this, but I chose keeping a dictionary of known functions 
as data on the Apply class. As a first pass, we can make our evaluator aware of three named 
functions: 

_function_bindings = { 
    "sin": math.sin, 
    "cos": math.cos, 
    "ln": math.log 
} 

 
class Apply(Expression): 

    def __init__(self,function,argument): 
        self.function = function 
        self.argument = argument 
    def evaluate(self, **bindings): 
        return 
_function_bindings[self.function.name](self.argument.evaluate(**bindings)) 

You can practice writing the rest of the evaluate methods yourself or find them in the source 
code for this book. Once you get all of them fully implemented, you’ll be able to evaluate our 
f_expression from section 10.1.3: 

>>>  f_expression.evaluate(x=5) 
-76.71394197305108 
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The result here isn’t important, only the fact that it’s the same as what the ordinary Python 
function f(x) gives us: 

>>> f(5) 
-76.71394197305108 

Equipped with the evaluate function, our Expression objects can do the same work as their 
corresponding ordinary Python functions. 

10.2.3 Expanding an expression 

There are many other things we can do with our expression data structures. In the exercises, 
you can try your hand at building a few more Python functions that manipulate expressions in 
different ways. I’ll show you one more example for now, which I mentioned at the beginning of 
this chapter: expanding an expression. What I mean by this is taking any product or power of 
sums and carrying it out. 

The relevant rule of algebra is the distributive property of sums and products. This rule says 
that a product of the form (a + b) · c is equal to ac + bc and, similarly, that x(y + z) = xy + xz. 
For instance, our expression (3x2 + x) sin(x) is equal to 3x2 sin(x) + x sin(x), which is called 
the expanded form of the first product. You can use this rule several times to expand more 
complicated expressions, for instance: 

 

 

 
As you can see, expanding a short expression like (x + y)3 can be a lot of writing. In addition to 
expanding this expression, I also simplified the result a bit, rewriting some products that would 
have looked like xyx or xxy as x2y, for instance. This is possible because order does not matter 
in multiplication. Then I further simplified by combining like terms, noting that there were three 
summed copies each of x2y and y2x and grouping those together into 3x2y and 3y2x. In the 
following example, we only look at how to do the expanding; you can implement the 
simplification as an exercise. 

We can start by adding an abstract expand method to the Expression base class: 

class Expression(ABC): 
    ... 
    @abstractmethod 
    def expand(self): 
        pass 
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If an expression is a variable or number, it is already expanded. For these cases, the expand 
method returns the object itself. For instance, 

class Number(Expression): 
    ... 
    def expand(self): 
        return self 

Sums are already considered to be expanded expressions, but the individual terms of a sum 
cannot be expanded. For example, 5 + a(x + y) is a sum in which the first term 5 is fully 
expanded, but the second term a(x + y) is not. To expand a sum, we need to expand each of 
the terms and sum them: 

class Sum(Expression): 
    ... 
    def expand(self): 
        return Sum(*[exp.expand() for exp in self.exps]) 

The same procedure works for function application. We can’t expand the Apply function itself, 
but we can expand its arguments. This would expand an expression like sin(x(y + z)) to sin(xy 
+ xz): 

class Apply(Expression): 
    ... 
    def expand(self): 
        return Apply(self.function, self.argument.expand()) 

The real work comes when we expand products or powers, where the structure of the expression 
changes completely. As an example, a(b + c) is a product of a variable with a sum of two 
variables, while its expanded form is ab + ac, the sum of two products of two variables each. 
To implement the distributive law, we have to handle three cases: the first term of the product 
might be a sum, the second term might be a sum, or neither of them might be sums. In the 
latter case, no expanding is necessary: 

class Product(Expression): 
    ... 
    def expand(self): 
        expanded1 = self.exp1.expand() #<1> 
        expanded2 = self.exp2.expand() 
        if isinstance(expanded1, Sum): #<2> 
            return Sum(*[Product(e,expanded2).expand()  

                         for e in expanded1.exps]) 
        elif isinstance(expanded2, Sum): #<3> 
            return Sum(*[Product(expanded1,e)  

                         for e in expanded2.exps]) 
        else: 
            return Product(expanded1,expanded2) #<4> 

#1 Expands both terms of the product 
#2 If the first term of the product is a Sum, it takes the product with each of its terms multiplied by the second term of 

the product, then calls expand on the result in case the second term of the product is also a Sum. 
#3 If the second term of the product is a Sum, it multiplies each of its terms by the first term of the product. 
#4 Otherwise, neither term is a Sum, and the distributive property doesn’t need to be invoked. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

With all of these methods implemented, we can test the expand function. With an appropriate 
implementation of __repr__ (see the exercises), we can see a string representation of the 
results clearly in Jupyter or in an interactive Python session. It correctly expands (a + b) (x + 
y) to ax + ay + bx + by: 

Y = Variable('y') 
Z = Variable('z') 
A = Variable('a') 
B = Variable('b') 
>>> Product(Sum(A,B),Sum(Y,Z)) 

Product(Sum(Variable("a"),Variable("b")),Sum(Variable("x"),Variable("y"))) 
>>> Product(Sum(A,B),Sum(Y,Z)).expand() 
Sum(Sum(Product(Variable("a"),Variable("y")),Product(Variable("a"),Variable("z
"))),Sum(Product(Variable("b"),Variable("y")),Product(Variable("b"),Variable("
z")))) 

And our expression, (3x2 + x) sin(x), expands correctly to 3x2 sin(x) + x sin(x): 

>>> f_expression.expand() 
Sum(Product(Product(3,Power(Variable("x"),2)),Apply(Function("sin"),Variable("
x"))),Product(Variable("x"),Apply(Function("sin"),Variable("x")))) 

At this point, we’ve written some Python functions that really do algebra for us, not just 
arithmetic. There are a lot of exciting applications of this type of programming (called symbolic 
programming, or more specifically, computer algebra), and we can’t afford to cover all of them 
in this book. You should try your hand at a few of the following exercises and then we move on 
to our most important example: finding the formulas for derivatives. 

10.2.4 Exercises 

 
Exercise 10.9: Write a function contains(expression, variable) that checks whether the given expression 
contains any occurrence of the specified variable. 
Solution: You could easily check whether the variable appears in the result of distinct_variables, but here’s the 
implementation from scratch: 
def contains(exp, var): 

    if isinstance(exp, Variable): 

        return exp.symbol == var.symbol 

    elif isinstance(exp, Number): 

        return False 

    elif isinstance(exp, Sum): 

        return any([contains(e,var) for e in exp.exps]) 

    elif isinstance(exp, Product): 

        return contains(exp.exp1,var) or contains(exp.exp2,var) 

    elif isinstance(exp, Power): 

        return contains(exp.base, var) or contains(exp.exponent, var) 

    elif isinstance(exp, Apply): 
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        return contains(exp.argument, var) 

    else: 

        raise TypeError("Not a valid expression.") 
 

 
Exercise 10.10: Write a distinct_functions function that takes an expression as an argument and returns the 
distinct, named functions (like sin or ln) that appear in the expression. 
Solution: The implementation looks a lot like the distinct_variables function from section 10.2.1: 

def distinct_functions(exp): 

    if isinstance(exp, Variable): 

        return set() 

    elif isinstance(exp, Number): 

        return set() 

    elif isinstance(exp, Sum): 

        return set().union(*[distinct_functions(exp) for exp in exp.exps]) 

    elif isinstance(exp, Product): 

        return distinct_functions(exp.exp1).union(distinct_functions(exp.exp2)) 

    elif isinstance(exp, Power): 

        return distinct_functions(exp.base).union(distinct_functions(exp.exponent)) 

    elif isinstance(exp, Apply): 

        return set([exp.function.name]).union(distinct_functions(exp.argument)) 

    else: 

        raise TypeError("Not a valid expression.") 
 

 
Exercise 10.11: Write a function contains_sum that takes an expression and returns True if it contains a Sum, and 
False otherwise. 
Solution: 
def contains_sum(exp): 

    if isinstance(exp, Variable): 

        return False 

    elif isinstance(exp, Number): 

        return False 

    elif isinstance(exp, Sum): 

        return True 

    elif isinstance(exp, Product): 

        return contains_sum(exp.exp1) or contains_sum(exp.exp2) 

    elif isinstance(exp, Power): 

        return contains_sum(exp.base) or contains_sum(exp.exponent) 

    elif isinstance(exp, Apply): 
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        return contains_sum(exp.argument) 

    else: 

        raise TypeError("Not a valid expression.") 
 

 
Mini-project 10.12: Write a __repr__ method on the Expression classes so that they appear legibly in an 
interactive session. 
Solution: See the walk-through notebook for chapter 10 or see appendix B for a discussion of __repr__ and other 
special methods on Python classes. 
 

 
Mini-project 10.13: If you know how to encode equations using the LaTeX language, write a _repr_latex_ method 
on the Expression classes that returns LaTeX code representing the given expression. You should see nicely typeset 
renderings of your expressions in Jupyter after adding the method: 

 
Adding a _repr_latex_ method causes Jupyter to render equations nicely in the REPL. 
Solution: See the walk-through notebook for chapter 10. 
 

 
Mini-project 10.14: Write a method to generate the Python code representing an expression. Use the Python eval 
function to turn this into an executable Python function. Compare the result with the evaluate method. For instance, 
Power(Variable(“x”),Number(2)) represents the expression x2. This should produce the Python code x**2. 
Then use Python’s eval function to execute this code and show how it matches the result of the evaluate method. 
Solution: See the walk-through notebook for implementation. When complete, you can run the following: 
>>> Power(Variable("x"),Number(2))._python_expr() 

'(x) ** (2)' 

>>> Power(Variable("x"),Number(2)).python_function(x=3) 

9 

 

10.3 Finding the derivative of a function 
It might not seem obvious, but there is often a clean algebraic formula for the derivative of a 
function. For instance, if f(x) = x3, then its derivative f′(x), which measures the instantaneous 
rate of change in f at any point x, is given by f′(x) = 3x2. If you know a formula like this, you 
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can get an exact result such as f′(2) = 12 without the numerical issues associated with using 
small secant lines. 

If you took calculus in high school or college, chances are you spent a lot of time learning and 
practicing how to find formulas for derivatives. It’s a straightforward task that doesn’t require 
much creativity, and it can be tedious. That’s why we’ll briefly spend time covering the rules 
and then focus on having Python do the rest of the work for us. 

10.3.1 Derivatives of powers 

Without knowing any calculus, you can find the derivative of a linear function of the form f(x) = 
mx + b. The slope of any secant on this line, no matter how small, is the same as the slope of 
the line m; therefore, f′(x) doesn’t depend on x. Specifically, we can say f′(x) = m. This makes 
sense: a linear function f(x) changes at a constant rate with respect to its input x, so its 
derivative is a constant function. Also, the constant b has no effect on the slope of the line, so 
it doesn’t appear in the derivative (figure 10.12). 

 
Figure 10.12: The derivative of a linear function is a constant function. 

It turns out the derivative of a quadratic function is a linear function. For instance, q(x) = x2 has 
derivative q′(x) = 2x. This also makes sense if you plot the graph of q(x). The slope of q(x) 
starts negative, increases, and eventually becomes positive after x = 0. The function q′(x) = 2x 
agrees with this qualitative description. 

As another example, I showed you that x3 has derivative 3x2. All of these facts are special cases 
of a general rule: when you take the derivative of a function f(x), which is a power of x, you get 
back a function that is one lower power. Specifically, figure 10.13 shows the derivative of a 
function of the form axn is naxn-1. 
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Figure 10.13: A general rule for derivatives of powers: taking the derivative of a function f(x), a power of x, 
returns a function that is one power lower. 

Let’s break this down for a specific example. If g(x) = 5x4, then this has the form axn with a = 
5 and n = 4. The derivative is naxn-1, which becomes 4 · 5 · x4-1 = 20x3. Like any other derivative 
we’ve covered in this chapter, you can double-check this by plotting it alongside the result from 
our numerical derivative function from chapter 9. The graphs should coincide exactly. 

A linear function like f(x) is a power of x: f(x) = mx1. The power rule applies here as well: mx1 
has a derivative 1 · mx0 because x0 = 1. By geometric considerations, adding a constant b does 
not change the derivative: it moves the graph up and down, but it doesn’t change the slope. 

10.3.2 Derivatives of transformed functions 

Adding a constant to a function never changes its derivative. For instance, the derivative of x100 

is 100x99, and the derivative of x100 − 𝜋𝜋 is also 100x99. But some modifications of a function do 
change the derivative. For example, if you put a negative sign in front of a function, the graph 
flips upside down and so does the graph of any secant line. If the slope of the secant line is m 
before the flip, it is -m after; the change in x is the same as before, but the change in y = f(x) 
is now in the opposite direction (figure 10.14). 

 
Figure 10.14: For any secant line on f(x), the secant line on the same x interval of -f(x) has the opposite slope. 
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Because derivatives are determined by the slopes of secant lines, the derivative of a negative 
function -f(-x) is equal to the negative derivative -f′(x). This agrees with the formula we’ve 
already seen: if f(x) = -5x2 then a = -5 and f′(x) = -10x (as compared to 5x2, which has the 
derivative +10x). Another way to put this is that if you multiply a function by -1, then its 
derivative is multiplied by -1 as well.  

The same turns out to be true for any constant. If you multiply f(x) by 4 to get 4f(x), figure 
10.15 shows that this new function is four times steeper at every point and, therefore, its 
derivative is 4f′(x). 

 
Figure 10.15: Multiplying a function by 4 makes every secant line four times steeper. 

This agrees with the power rule for derivatives I showed you. Knowing the derivative of x2 is 2x, 
you also know that the derivative of 10x2 is 20x, the derivative of -3x2 is -6x, and so on. We 
haven’t covered it yet, but if I tell you the derivative of sin(x) is cos(x), you’ll know right away 
that the derivative of 1.5 · sin(x) is 1.5 · cos(x). 

A final transformation that’s important is adding two functions together. If you look at the graph 
of f(x) + g(x) for any pair of functions f and g in figure 10.16, the vertical change for any secant 
line is the sum of the vertical changes in f and g on that interval. 
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Figure 10.16: The vertical change in f(x) on some x interval is the sum of the vertical change in f(x) and in g(x) on 
that interval. 

When we’re working with formulas, we can take the derivative of each term in a sum 
independently. If we know that the derivative of x2 is 2x, and the derivative of x3 is 3x2, then 
the derivative of x2 + x3 is 2x + 3x2. This rule gives a more precise reason why the derivative 
of mx + b is m: the derivatives of the terms are m and 0, respectively, so the derivative of the 
whole formula is m + 0 = m. 

10.3.3 Derivatives of some special functions 

There are plenty of functions that can’t be written in the form axn or even as a sum of terms of 
this form. For example, trigonometric functions, exponential functions, and logarithms all need 
to be covered separately. In a calculus class, you learn how to figure out the derivatives of these 
functions from scratch, but that’s beyond the scope of this book. My goal is to show you how to 
take derivatives so that when you meet them in the wild, you’ll be able to solve the problem at 
hand. To that end, I give you a quick list of some other important derivative rules (table 10.1). 

Table 10.1: Some basic derivatives 

Function name Formula Derivative 

Sine sin(x) cos(x) 
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Cosine cos(x) -sin(x) 

Exponential ex ex 

Exponential (any base) ax ln(a) · ax 

Natural logarithm ln(x) 

 

Logarithm (any base) loga x 

 

You can use this table along with the previous rules to figure out more complicated derivatives. 
For instance, let f(x) = 6x + 2 sin(x) + 5ex. The derivative of the first term is 6, by the power 
rule from section 10.3.1. The second term contains sin(x), whose derivative is cos(x), and the 
factor of two doubles the result, giving us 2 cos(x). Finally, ex is its own derivative (a very 
special case!), so the derivative of 5ex is 5ex. All together the derivative is f′(x) = 6 + 2 cos(x) 
+ 5ex. 

You have to be careful to only use the rules we’ve covered so far: the power law (section 10.3.1), 
the rules in the table 10.1, and the rules for sums and scalar multiples. If your function is g(x) 
= sin(sin(x)), you might be tempted to write g′(x) = cos(cos(x)), substituting in the derivative 
for sine in both of its appearances. But this is not correct! Nor can you infer that the derivative 
of the product ex cos(x) is -ex sin(x). When functions are combined in other ways than addition 
and subtraction, we need new rules to take their derivatives. 

10.3.4 Derivatives of products and compositions 

Let’s look at a product like f(x) = x2 sin(x). This function can be written as a product of two 
other functions: f(x) = g(x) · h(x), where g(x) = x2 and h(x) = sin(x). As I just warned you, 
f′(x) is not equal to g′(x) · h′(x) here. Fortunately, there’s another formula that is true and it's 
called the product rule for derivatives. 

THE PRODUCT RULE: If f(x) can be written as the product of two other functions g and h as in f(x) = g(x) · 

h(x), then the derivative of f(x)is given by: 

f′(x) = g′(x) · h(x) + g(x) · h′(x)  
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Let’s practice applying this rule to f(x) = x2 sin(x). In this case, g(x) = x2 and h(x)=sin(x), so 
g′(x) = 2x and h′(x) = cos(x) as I showed you previously. Plugging these into the product rule 
formula f′(x) = g′(x) · h(x) + g(x) · h′(x), we get f′(x) = 2x sin(x) + x2 cos(x). That’s all there 
is to it! 

You can see that this product rule is compatible with the power rule from section 10.3.1. If you 
rewrite x2 as the product of x · x, the product rule tells you its derivative is 1 · x + x · 1 = 2x. 

Another important rule tells us how to take derivatives of composed functions like ln(cos(x)). 
This function has the form f(x) = g(h(x)), where g(x) = ln(x) and h(x) = cos(x). We can’t just 
plug in the derivatives where we see the functions, getting -1/sin(x); the answer is a bit more 
complicated. The formula for the derivative of a function of the form f(x) = g(h(x)) is called the 
chain rule. 

THE CHAIN RULE: If f(x)is a composition of two functions, meaning it can be written in the form f(x) = 

g(h(x)) for some functions g and h, then the derivative of f is given by: 

f′(x) = h′(x) · g′(h(x)) 

In our case, g′(x) = 1/x and h′(x) = -sin(x) both read from table 10.1. Then plugging into the 
chain rule formula, we get the result:  

. 
You might remember that sin(x)/cos(x) = tan(x), so we could write even more concisely that 
the derivative of ln(cos(x)) = tan(x). I’ll give you a few more opportunities to practice the 
product and chain rule in the exercises, and you can also turn to any calculus book for abundant 
examples of calculating derivatives. You don’t need to take my word for these derivative rules: 
you should get a result that looks the same if you find a formula for the derivative or if you use 
the derivative function from chapter 9. In the next section, I’ll show you how to turn the rules 
for derivatives into code. 

10.3.5 Exercises 

 
Exercise 10.15: Show that the derivative of f(x) = x5 is indeed f′(x) = 5x4 by plotting the numerical derivative (using the 
derivative function from chapter 8) alongside the symbolic derivative f′(x) = 5x4. 
Solution: 
def p(x): 

    return x**5 

plot_function(derivative(p), 0, 1) 

plot_function(lambda x: 5*x**4, 0, 1) 
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The two graphs overlap exactly. 

 
The graph of 5x4 and the (numerical) derivative of x5 

 

 
Mini-project 10.16: Let’s think again of the functions of one variable as a vector space as we did in chapter 6. Explain 
why the rules for taking derivatives mean the derivative is a linear transformation of this vector space. (To be specific, 
you have to restrict your attention to the functions that have derivatives everywhere.) 
Solution: Thinking of functions f and g as vectors, we can add and multiply them by scalars. Remember that (f + g)(x) = 
f(x) + g(x) and (c · f)(x) = c · f(x). A linear transformation is one that preserves vector sums and scalar multiples. 
If we write the derivative as a function D, we can think of it as taking a function as an input and returning its derivative 
as an output. For instance, Df = f′. The derivative of a sum of two functions is the sum of the derivatives: 
D(f + g) = Df + Dg 
The derivative of a function multiplied by a number c is c times the derivative of the original function: 
D(c · f) = c · Df 
These two rules mean that D is a linear transformation. Note, in particular, that the derivative of a linear combination of 
functions is the same linear combination of their derivatives: 
D(a · f + b · g) = a · Df + b · Dg 
 

 
Mini-project 10.17: Find a formula for the derivative of a quotient: f(x) / g(x). Hint: use the fact that  

 
The power law holds for negative exponents; for instance, x-1 has the derivative -x-2 = -1/x2. 
Solution: The derivative of g(x)-1 is -g(x)-2 · g′(x) by the chain rule or  
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With this information, the derivative of the quotient f(x)/g(x) is equal to the derivative of the product f(x)/g(x)-1, which is 
given by the product rule: 

 
Multiplying the first term by g(x)/g(x) gives both terms the same denominator, so we can add them: 

 
 

 
Exercise 10.18: What is the derivative of sin(x) · cos(x) · ln(x)? 
Solution: There are two products here, and fortunately, we can take the product rule in any order and get the same 
result. The derivative of sin(x) · cos(x) is sin(x) · -sin(x) + cos(x) · cos(x) = cos(x)2 − sin(x)2. The derivative of ln(x) is 1/x, so 
the product rule tells us that the derivative of the whole product is: 

 
 

 
Exercise 10.19: Assume we know the derivatives of three functions f, g, and h, which are written f′, g′, and h′. What is 
the derivative of f(g(h(x))) with respect to x? 
Solution: We need to apply the chain rule twice here. One term is f′(g(h(x))), but we need to multiply it by the derivative 
of g(h(x)). That derivative is g′(h(x)) times the derivative of the inside function h(x). Because the derivative of g(h(x)) is 
h′(x) · g′(h(x)), the derivative of f(g(h(x))) is f′(x) · g′(h(x)) · f′(g(h(x))). 
 

10.4 Taking derivatives automatically 
Even though I taught you only a few rules for taking derivatives, you’re now prepared to handle 
any of an infinite collection of possible functions. As long as a function is built from sums, 
products, powers, compositions, trigonometric functions, and exponential functions, you are 
equipped to figure out its derivative using the chain rule, product rule, and so on. 

This parallels the approach we used to build algebraic expressions in Python. Even though there 
are infinitely many possibilities, they are all formed from the same set of building blocks and a 
handful of predefined ways to assemble them together. To take derivatives automatically, we 
need to match each case of a representable expression, be it an element or combinator, with 
the appropriate rule for taking its derivative. The end result is a Python function that takes one 
expression and returns a new expression representing its derivative. 
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10.4.1 Implementing a derivative method for expressions 

Once again, we can implement the derivative function as a method on each of the Expression 
classes. To enforce that they all have this method, we can add an abstract method to the 
abstract base class: 

class Expression(ABC): 
    ... 
    @abstractmethod 
    def derivative(self,var): 
        pass 

The method needs to take a parameter, var, indicating which variable we’re taking a derivative 
with respect to. For instance, f(y) = y2 would need a derivative taken with respect to y. As a 
trickier example, we’ve worked with expressions like axn, where a and n represent constants 
and only x is the variable. From this perspective, the derivative is naxn-1. However, if we think 
of this instead as a function of a, as in f(a) = axn, the derivative is xn-1, a constant to a constant 
power. We get yet another result if we consider it a function of n: if f(n) = axn, then f′(n) = a 
ln(n) xn. To avoid confusion, we’ll consider all expressions as functions of the variable x in the 
following discussion. 

As usual, our easiest examples are the elements: Number and Variable objects. For Number, 
the derivative is always the expression 0, regardless of the variable passed in: 

class Number(Expression): 
    ... 
    def derivative(self,var): 
        return Number(0) 

If we’re taking the derivative of f(x) = x, the result is f′(x) = 1, which is the slope of the line. 
Taking the derivative of f(x) = c should give us 0 as c represents a constant here, rather than 
the argument of the function f. For that reason, the derivative of a variable is 1 only if it’s the 
variable we’re taking the derivative with respect to; otherwise, the derivative is 0: 

class Variable(Expression): 
    ... 
    def derivative(self, var): 
        if self.symbol == var.symbol: 
            return Number(1) 
        else: 
            return Number(0) 

The easiest combinator to take derivatives of is Sum: the derivative of a Sum function is just the 
sum of the derivatives of its terms: 

class Sum(Expression): 
    ... 

    def derivative(self, var): 
        return Sum(*[exp.derivative(var) for exp in self.exps]) 
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With these methods implemented, we can do some basic examples. For instance, the expression 
Sum(Variable("x"),Variable("c"),Number(1)) represents x + c + 1, and thinking of that as 
a function of x, we can take its derivative with respect to x: 

>>> Sum(Variable("x"),Variable("c"),Number(1)).derivative(Variable("x")) 
Sum(Number(1),Number(0),Number(0)) 

This correctly reports the derivative of x + c + 1 with respect to x as 1 + 0 + 0, which is equal 
to 1. This is a clunky way to report the result, but at least we got it right.  

I encourage you to do the mini-project for writing a simplify method that gets rid of extraneous 
terms, like added zeros. We could add some logic to simplify expressions as we compute the 
derivatives, but it’s better to separate our concerns and focus on getting the derivative right for 
now. Keeping that in mind, let’s cover the rest of the combinators. 

10.4.2 Implementing the product rule and chain rule 

The product rule turns out to be the easiest of the remaining combinators to implement. Given 
the two expressions that make up a product, the derivative of the product is defined in terms of 
those expressions and their derivatives. Remember, if the product is g(x) · h(x), the derivative 
is g′(x) · h(x) + g(x) · h′(x). That translates to the following code, which returns the result as 
the sum of two products: 

class Product(Expression): 
    ... 
    def derivative(self,var): 
        return Sum( 
            Product(self.exp1.derivative(var), self.exp2), 
            Product(self.exp1, self.exp2.derivative(var))) 

Again, this gives us correct (albeit unsimplified) results. For instance, the derivative of cx with 
respect to x is 

>>> Product(Variable("c"),Variable("x")).derivative(Variable("x")) 
Sum(Product(Number(0),Variable("x")),Product(Variable("c"),Number(1))) 

That result represents 0 · x + c · 1, which is, of course, c. 

Now we’ve got the Sum and Product combinators handled, so let’s look at Apply. To handle a 
function application like sin(x2), we need to encode both the derivative of the sine function and 
the use of the chain rule because of the x2 inside the parentheses. 

First, let’s encode the derivatives of some of the special functions in terms of a placeholder 
variable unlikely to be confused with any we use in practice. The derivatives are stored as a 
dictionary mapping from function names to expressions giving their derivatives: 

_var = Variable('placeholder variable') #<1> 
 
_derivatives = { 
    "sin": Apply(Function("cos"), _var), #<2> 
    "cos": Product(Number(-1), Apply(Function("sin"), _var)), 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

    "ln": Quotient(Number(1), _var) 
} 

#1 Creates a placeholder variable designed so that it’s not confused with any symbol (like x or y) that we might actually 
use 

#2 Records that the derivative of sine is cosine, with cosine expressed as an expression using the placeholder variable 

The next step is to add the derivative method to the Apply class, looking up the correct 
derivative from the _derivatives dictionary and appropriately applying the chain rule. 
Remember that the derivative of g(h(x)) is h′(x) · g′(h(x)). If, for example, we’re looking at 
sin(x2), then g(x) = sin(x) and h(x) = x2. We first go to the dictionary to get the derivative of 
sin, which we get back as cos with a placeholder value. We need to plug in h(x) = x2 for the 
placeholder to get the g′(h(x)) term from the chain rule. This requires a substitute function, 
which replaces all instances of a variable with an expression (a mini-project from earlier in the 
chapter). If you didn’t do that mini-project, you can see the implementation in the source code. 
The derivative method for Apply looks like this: 

class Apply(Expression): 
    ... 
    def derivative(self, var): 
        return Product( 
                self.argument.derivative(var), #<1> 
                _derivatives[self.function.name].substitute(_var, 
self.argument)) #<2> 

#1 Returns h′(x) in h′(x) · g′(h(x)) of the chain rule formula 
#2 This is the g′(h(x)) of the chain rule formula, where the _derivatives dictionary looks up g′ and h(x) is substituted in. 

For sin(x2), for example, we have 

>>> Apply(Function("sin"),Power(Variable("x"),Number(2))).derivative(x) 
Product(Product(Number(2),Power(Variable("x"),Number(1))),Apply(Function("cos"
),Power(Variable("x"),Number(2)))) 

Literally, that result translates to (2x1) · cos(x2), which is a correct application of the chain rule. 

10.4.3 Implementing the power rule 

The last kind of expression we need to handle is the Power combinator. There are actually three 
derivative rules we need to include in the derivative method for the Power class. The first is 
the rule I called the power rule, which tells us that xn has derivative nxn-1, when n is a constant. 
The second is the derivative of the function ax, where the base, a, is assumed to be constant 
while the exponent changes. This function has the derivative ln(a) · ax with respect to x. 

Finally, we need to handle the chain rule here because there could be an expression involved in 
either the base or the exponent, like sin(x)8 or 15cos(x). There’s yet another case where both the 
base and the exponent are variables like xx or ln(x)sin(x). In all my years taking derivatives, I’ve 
never seen a real application where this case comes up, so I’ll skip it and raise an exception 
instead. 
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Because xn, g(x)n, ax, and ag(x) are all represented in Python in the form Power(expression1, 
expression2), we have to do some checks to find out what rule to use. If the exponent is a 
number, we use the xn rule, but if the base is a number, we use the ax rule. In both cases, I 
use the chain rule by default. After all, xn is a special case of f(x)n, where f(x) = x. Here’s what 
the code looks like: 

class Power(Expression): 
    ... 
    def derivative(self,var): 
        if isinstance(self.exponent, Number): #<1> 
            power_rule = Product( 
                    Number(self.exponent.number),  
                    Power(self.base, Number(self.exponent.number - 1))) 
            return Product(self.base.derivative(var),power_rule) #<2> 
        elif isinstance(self.base, Number): #<3> 
            exponential_rule = Product( 

                Apply(Function("ln"), 
                Number(self.base.number) 
            ),  
            self) 

            return Product( 
                self.exponent.derivative(var),  
                exponential_rule) #<4> 

        else: 
            raise Exception( 

            "can't take derivative of power {}".format( 
            self.display())) 

#1If the exponent is a number, uses the power rule 
#2 The derivative of f(x)n is f′(x) · nf(x)n-1, so here we multiply the factor of f′(x) according to the chain rule. 
#3 Checks if the base is a number; if so, we use the exponential rule. 
#4 Multiplies in a factor of f′(x) if we’re trying to take the derivative of af(x), again according to the chain rule 

In the final case, where neither the base or the exponent is a number, we raise an error. With 
that final combinator implemented, you have a complete derivative calculator! It can handle 
(nearly) any expression built out of your elements and combinators. If you test it on our original 
expression, (3x2 + x) sin(x), you’ll get back the verbose, but correct, result of: 

 
This reduces to (6x + 1) sin(x) + (3x2 + x) cos(x) and shows a correct use of the product and 
the power rules. Coming into this chapter, you knew how to use Python to do arithmetic, then 
you learned how to have Python do algebra as well. Now, you can really say, you’re doing 
calculus in Python too! In the final section, I’ll tell you a bit about taking integrals symbolically 
in Python, using an off-the-shelf Python library called SymPy. 
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10.4.4 Exercises 

 
Exercise 10.20: Our code already handles the case where one expression making up a product is constant, meaning a 
product of the form c · f(x) or f(x) · c for some expression f(x). Either way, the derivative is c · f′(x). You don’t need the 
second term of the product rule, which is f(x) · 0 = 0. Update the code taking the derivative of a product to handle this 
case directly, rather than expanding the product rule and including a zero term. 
Solution: We could check whether either expression in a product is an instance of the Number class. The more general 
approach is to see whether either term of the product contains the variable we’re taking the derivative with respect to. 
For instance, the derivative of (3 + sin(5a)) f(x) with respect to x doesn’t require the product rule because the first term 
contains no appearance of x. Therefore, its derivative (with respect to x) is 0. We can use the 
contains(expression,variable) function from a previous exercise to do the check for us: 

class Product(Expression): 

    ... 

    def derivative(self,var): 

        if not contains(self.exp1, var): #<1> 

            return Product(self.exp1, self.exp2.derivative(var)) 

        elif not contains(self.exp2, var): #<2> 

            return Product(self.exp1.derivative(var), self.exp2) 

        else: #<3> 

            return Sum( 

                Product(self.exp1.derivative(var), self.exp2), 

                Product(self.exp1, self.exp2.derivative(var))) 

#1 If the first expression has no dependence on the variable, returns the first expression times the derivative of the 
second 
#2 Otherwise, if the second expression has no dependence on the variable, returns the derivative of the first 
expression times the unmodified second expression 
#3 Otherwise, uses the general form of the product rule 
 

 
Exercise 10.21: Add the square root function to the dictionary of known functions and take its derivative automatically. 
(Hint: the square root of x is equal to x1/2.) 
Solution: Using the power law, the derivative of the square root of x with respect to x is ½ · x-1/2, which can also be 
written as: 

 
We can encode that derivative formula as an expression like so: 
_function_bindings = { 

    ... 

    "sqrt": math.sqrt 

} 
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_derivatives = { 

    ... 

    "sqrt": Quotient(Number(1), Product(Number(2), Apply(Function("sqrt"), _var))) 

} 
 

10.5 Integrating functions symbolically 
The other calculus operation we learned about in the last two chapters is integration. While a 
derivative takes a function and returns a function describing its rate of change, an integral does 
the opposite—it reconstructs a function from its rate of change. 

10.5.1 Integrals as antiderivatives 

For instance, when y = x2, the derivative tells us that the instantaneous rate of change in y with 
respect to x is 2x. If we started with 2x, the indefinite integral answers the question: what 
function of x has an instantaneous rate of change equal to 2x? For this reason, indefinite 
integrals are also referred to as antiderivatives. 

One possible answer for the indefinite integral of 2x with respect to x is x2, but other possibilities 
are x2 − 6 or x2 + 𝜋𝜋. Because the derivative is 0 for any constant term, the indefinite integral 
doesn’t have a unique result. Remember, even if you know what a car’s speedometer reads for 
the entire trip, it won’t tell you where the car started or ended its journey. For that reason, we 
say that x2 is an antiderivative of 2x, but not the antiderivative. 

If we want to talk about the antiderivative or the indefinite integral, we have to add an 
unspecified constant, writing something like x2 + C. The C is called the constant of integration, 
and it has some infamy in calculus classes; it seems like a technicality, but it’s important, and 
most teachers deduct points if students forget this. 

Some integrals are obvious if you’ve practiced enough derivatives. For instance, the integral of 
cos(x) with respect to x is written  

  
And the result is sin(x) + C because for any constant C, the derivative of sin(x) + C is cos(x). 
If you’ve got the power rule fresh in your head, you might be able to solve the integral: 

 
The expression 3x2 is what you get if you apply the power rule to x3, so the integral is 
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There are some harder integrals like 

 
which don’t have obvious solutions. You need to invoke more than one derivative rule in reverse 
to find the answer. A lot of time in calculus courses is dedicated to figuring out tricky integrals 
like this. What makes the situation worse is that some integrals are impossible. Famously, the 
function 

  
is one where it’s not possible to find a formula for its definite integral (at least without making 
up a new function to represent it). Rather than torture you with a bunch of rules for integration, 
let me show you how to use a pre-built library with an integrate function so Python can handle 
integrals for you. 

10.5.2 Introducing the SymPy library 

The SymPy (Symbolic Python) library is an open source Python library for symbolic math. It has 
its own expression data structures, much like the ones we built, along with overloaded 
operators, making them look like ordinary Python code. Here you can see some SymPy code 
that looks like what we’ve been writing: 

>>> from sympy import * 
>>> from sympy.core.core import * 
>>> Mul(Symbol('y'),Add(3,Symbol('x'))) 
y*(x + 3) 

The Mul, Symbol, and Add constructors replace our Product, Variable, and Sum constructors, 
but have similar results. SymPy also encourages you to use shorthand; for instance, 

>>> y = Symbol('y') 
>>> x = Symbol('x') 
>>> y*(3+x) 
y*(x + 3) 

creates an equivalent expression data structure. You can see that it’s a data structure by our 
ability to substitute and take derivatives: 

>>> y*(3+x).subs(x,1) 
4*y 
>>> (x**2).diff(x) 
2*x 
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To be sure, SymPy is a much more robust library than the one we’ve built in this chapter. As 
you can see, the expressions are automatically simplified. 

The reason I’m introducing SymPy is to show you its powerful symbolic integration function. You 
can find the integral of an expression like 3x2 like this: 

>>> (3*x**2).integrate(x) 
x**3 

That tells us that  

 
In the next few chapters, we’ll continue putting derivatives and integrals to work. 

10.5.3 Exercises 

 
Exercise 10.22: What is the integral of f(x) = 0? Confirm your answer with SymPy, remembering that SymPy does not 
automatically include a constant of integration. 
Solution: Another way of asking this question is what function has a derivative zero? Any constant valued function has a 
zero slope everywhere, so it has a derivative zero. The integral is 

 
In SymPy, the code Integer(0) gives you the number 0 as an expression, so the integral with respect to a variable x 
is 
>>> Integer(0).integrate(x) 

0 

Zero, as a function, is one antiderivative of zero. Adding a constant of integration, we get 0 + C or just C, matching what 
we came up with. Any constant function is an antiderivative of the constant, zero function. 
 

 
Exercise 10.23: What is the integral of x cos(x)?  
Hint: Look at the derivative of x sin(x). Confirm your answer with SymPy. 
Solution: Let’s start with the hint—the derivative of x sin(x) is sin(x) + x cos(x) by the product rule. That’s almost what we 
want, but for an extra sin(x) term. If we had a -sin(x) term appearing in the derivative, it would cancel this extra sin(x) 
out, and the derivative of cos(x) is -sin(x). That is, the derivative of x sin(x) + cos(x) is sin(x) + x cos(x) − sin(x) = x cos(x). 
This was the result we are looking for, so the integral is 

 
Our answer checks out in SymPy: 
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>>> (x*cos(x)).integrate(x) 

x*sin(x) + cos(x) 

This approach of reverse engineering the derivative as one term of a product is called integration by parts and is a 
favorite trick of calculus teachers everywhere. 
 

 
Exercise 10.24: What is the integral of x2? Confirm your answer with SymPy. 
Solution: If f′(x) = x2 then f(x) probably contains x3 because the power law reduces powers by one. The derivative of x3 is 
3x2, so we want a function that gives us a third of that result. What we want is x3/3, which has derivative x2. In other 
words, 

 
SymPy confirms this: 
>>> (x**2).integrate(x) 

x**3/3 

 

10.6 Summary 
• Modeling algebraic expressions as data structures rather than as strings of code lets you 

write programs to answer more questions about the expressions. 
• The natural way to model an algebraic expression in code is as a tree. The nodes of the 

tree can be divided into elements (variables and numbers) that are standalone 
expressions, and combinators (sums, products, and so on) that contain two or more 
expressions as subtrees. 

• By recursively traversing an expression tree, you can answer questions about it, such as 
what variables it contains. You can also evaluate or simplify the expression, or translate 
it to another language. 

• If you know the expression defining a function, there are a handful of rules you can apply 
to transform it into the expression for the derivative of the function. Among these are 
the product rule and the chain rule, which tell you how to take derivatives of products of 
expressions and compositions of functions, respectively. 

• If you program the derivative rule corresponding to each combinator in your Python 
expression tree, you get a Python function that automatically finds expressions for 
derivatives. 

• SymPy is a robust Python library for working with algebraic expressions in Python code. 
It has built-in simplification, substitution, and derivative functions. It also has a symbolic 
integration function that tells you the formula for the indefinite integral of a function. 
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Simulating force fields 

This chapter covers 

• Modeling forces like gravity using scalar and vector fields 
• Calculating force vectors using the gradient 
• Taking the gradient of a function in Python 
• Adding gravitational force to the asteroid game 
• Calculating gradients and working with vector fields in higher dimensions 

There has just been a catastrophic event in the universe of our asteroid game: a black hole has 
appeared in the center of the screen! As a result of this new object in our game, shown in figure 
11.1, the spaceship and all of the asteroids will feel a “gravitational pull” toward the middle of 
the screen. This makes the game even more challenging, and it gives us a new mathematical 
challenge as well: understanding force fields. 
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Figure 11.1: Oh no, a black hole! 

Gravity is a familiar example of a force that acts at a distance, meaning that you don’t have to 
be touching an object to feel its gravitational pull. For instance, when you’re flying on an 
airplane, you can still walk around normally because, even at 30,000 feet, the Earth is pulling 
you downward. Magnetism and static electricity are other familiar forces that act at a distance. 
In physics, we picture sources of these kinds of forces, like magnets or statically charged 
balloons, as generating an invisible force field around themselves. Anywhere in the Earth’s 
gravitational force field, called its gravitational field, an object will feel a pull toward the Earth. 

Our central coding challenge for this chapter is adding a gravitational field to the asteroid game, 
and once we’re done with that, we’ll cover the math in more generality. Namely, force fields are 
modeled with mathematical functions called vector fields. Vector fields often arise as outputs 
from a calculus operation called the gradient, which is a key tool in the machine learning 
examples we cover in part 3. 

The math and code in this chapter aren’t particularly hard, but there are a lot of new concepts 
to get familiar with. For that reason, I want to show you the story arc for the chapter before we 
dig in in earnest. 

11.0.1 Modeling gravity with a vector field 

A vector field is an assignment of a vector at every point in space. A gravitational field is a vector 
field telling us how strongly gravity pulls and in what direction from any given point. 

You can visualize a vector field by picking a bunch of points and drawing the vector assigned to 
each point as an arrow starting from that point. For instance, the gravitational field caused by 
the black hole in our asteroid game might look like figure 11.2. 
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Figure 11.2: Picturing the gravitational field created by the black hole in our asteroid game 

Figure 11.2 agrees with our intuition about gravity: all the arrows around the black hole point 
toward it so that any object placed in this region feels pulled toward the black hole. Closer to 
the black hole, it’s gravitational pull is stronger, so the arrows are longer. 

The first thing we do in this chapter is to model gravitational fields as functions, taking a point 
in space to tell us the magnitude and direction of the force an object would feel at that point. In 
Python, a 2D vector field is a function that takes a 2D vector representing a point and returns a 
2D vector that is the force at that point. 

Once we build that function, we use it to add a gravitational field to our asteroid game. It will 
tell us what gravitational forces are felt by the spaceship and the asteroids, depending on their 
locations and, therefore, what their rate and direction of acceleration should be. Once we 
implement the acceleration, we’ll see the objects in the asteroid game accelerate toward the 
black hole. 

11.0.2 Modeling gravity with a potential energy function 

After modeling the gravitational field, we’ll look at a second, equivalent mental model for force 
at a distance, called potential energy. You can think of potential energy as stored energy, ready 
to be converted into motion. For instance, a bow and arrow have no potential energy to begin 
with, but when you stretch the bow it gains potential energy. When the bow is released, this 
energy is converted into motion (figure 11.3). 
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Figure 11.3: On the left, the bow has no potential energy. On the right, it has a lot of potential energy, ready to 
be spent to put the arrow in motion. 

You can picture pulling a spaceship away from the black hole as pulling back an imaginary bow 
and arrow. The further you pull the spaceship from the black hole, the more potential energy it 
has, and the faster it ends up going after it is released. We’ll model potential energy as another 
Python function, taking the 2D position vector of an object in the game world and returning a 
number measuring its potential energy at that point. An assignment of a number (instead of a 
vector) to every point in space is called a scalar field. 

With a potential energy function, we’ll use several Matplotlib visualizations to see what it looks 
like. One important example is called a heatmap, which uses darker and brighter colors to show 
how the value of a scalar field changes over a 2D space (figure 11.4). 

Figure 11.4: A heatmap of potential energy, using brighter colors to represent higher potential energy values 

As figure 11.4 shows, the further away from the black hole you get on this heatmap, the brighter 
the colors get, meaning the potential energy is greater. The scalar field representing potential 
energy is a different mathematical model than the vector field representing gravitational force, 
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but they represent the same physics. They are also mathematically connected by an operation 
called the gradient. 

The gradient of a scalar field is a vector field, which tells us the direction and magnitude of 
steepest increase in the scalar field. In our example, potential energy increases as you move 
away from the black hole, so the gradient of potential energy is a vector field pointing outward 
at every point. Superimposing the gradient vector field on the potential energy heatmap, figure 
11.5 shows us that arrows point in the direction that the potential energy increases. 

 
Figure 11.5: A potential energy function plotted as a heatmap with its gradient, a vector field, superimposed. 
The gradient points in the direction of increasing potential energy. 

The gradient vector field in figure 11.5 looks similar to the gravitational field of the black hole, 
except the arrows are pointing in the opposite directions and the magnitudes are reversed. To 
get a gravitational field from a potential energy function, we need to take the gradient and then 
reverse the directions of the force field vectors by adding a minus sign. At the end of this 
chapter, I’ll show you how to calculate the gradient of a scalar field using derivatives, which 
allow us to switch from the potential energy model of gravity to the force field model of gravity. 

Now that you have a sense of where we’re going in this chapter, we’re ready to dig in. The first 
thing we’ll do is look closer at vector fields and see how to turn them into Python functions. 

11.1 Modeling gravitational fields 
A vector field is an assignment of a vector to every point in a space; for instance, a gravitational 
force vector for every location in our asteroid game. We’ll look exclusively at 2D vector fields 
that assign 2D vectors to every point in a 2D space. The first thing we’ll do is build concrete 
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representations of vector fields as Python functions taking 2D vectors as inputs and returning 
2D vectors as outputs. I’ve given you a function, plot_vector_field, in the source code that 
takes such a function as an argument and draws a picture of it by drawing the output vectors 
at a large number of input points in 2D. 

Then, we’ll write code to add a black hole to our asteroid game. For our purposes, a black hole 
just means a black circle that exerts an attractive force on all objects around it as shown in 
figure 11.6. 

 
Figure 11.6: The black hole in our asteroid game is a black circle with every object in the game feeling the pull 
of a force toward it. 

To make this work, we implement a BlackHole class, define its corresponding gravitational 
field as a function and then update our game loop so that the spaceship and asteroids respond 
to the forces according to Newton’s laws. 

11.1.1 Defining a vector field 

Let’s cover a bit of basic notation for vector fields. A vector field in the 2D plane is a function 
F(x, y) that takes a vector represented by its two coordinates, x and y. It returns another 2D 
vector that is the value of the vector field at the point (x, y). The bold F signifies that its return 
values are vectors and that we can say that F is a vector-valued function. When we’re talking 
about vector fields, we usually interpret the inputs as points in the plane and the outputs as 
arrows. Figure 11.7 shows a schematic for the vector field F(x, y) = (-2y, x). 
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Figure 11.7: The vector field F(x, y) = (-2y, x) takes the point (3, 1) as input and produces the arrow (-2, 3) as 
output. 

It’s usual to draw the output vector as an arrow starting from the point in the plane that was 
the input vector, so that the output vector is “attached” to the input point (figure 11.8). 

 
Figure 11.8: Attaching the vector (-2, 3) to the point (3, 1) 

If you calculate several values of F, you can start to picture the vector field by drawing a number 
of arrows attached to points at once. Figure 11.9 shows three more points, (-2, 2), (-1, -2), and 
(-1, -2) with arrows attached to them representing the values of F at the points. The results are 
(-4, -2), (4, -1), and (4, 3), respectively. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 11.9: Arrows attached to points, representing more values of the vector field F(x, y) = (-2y, x). 

If we draw a lot more arrows, they start to overlap and the diagram becomes illegible. To avoid 
this, we typically scale down the lengths of vectors by a constant factor. I’ve included a wrapper 
function called plot_vector_field on top of Matplotlib, and you can use it as follows to 
generate a visualization of a vector field. You can see that the vector field F(x, y) circulates in 
a counterclockwise direction around the origin (figure 11.10): 

def f(x,y): 
    return (-2*y, x) 
 
plot_vector_field(f, -5,5,-5,5) <1> 

 

#1 The first argument is the vector field; the next arguments are the x bounds followed by the y bounds for the plot. 

 
Figure 11.10: A plot of F(x, y) as vectors emanating from (x, y) points that are generated by Matplotlib. 
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One of the big ideas of physics is how some kinds of forces are modeled by vector fields. The 
example we focus on next is a simplified model of gravity. 

11.1.2 Defining a simple force field 

As you might expect, gravitational forces get stronger as you get closer to their sources. Even 
though the sun has stronger gravity than the Earth, you are much closer to the Earth, so you 
only feel the Earth’s gravity. For simplicity, we won’t use a realistic gravitational field. Instead, 
we’ll use the vector field F(r) = -r, which is F(x, y) = (-x, -y) in the plane. Here’s what it looks 
like in code, and figure 11.11 shows what it looks like on a plot: 

def f(x,y): 
    return (-x,-y) 
 
plot_vector_field(f,-5,5,-5,5) 

 
Figure 11.11: A visualization of the vector field F(x, y) = (-x, -y) 

This vector field is like a gravitational field in that it points toward the origin everywhere, but it 
has the advantage that the field gets stronger as you go further away. That guarantees that we 
can’t have a simulated object reach escape velocity and completely disappear from view; every 
wayward object eventually gets to a point where the force field is big enough to slow it down 
and pull it back toward the origin. Let’s confirm this by implementing this gravitational field for 
a black hole in our asteroid game. 

11.2 Adding gravity to the asteroid game 
The black hole in our game is a PolygonModel object with 20 vertices at equal distances, so 
it will be approximately circular. We specify the strength of the gravitational pull of the black 
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hole by one number, which we’ll call its gravity. This number is passed to the constructor for 
the black hole: 

class BlackHole(PolygonModel): 
    def __init__(self,gravity): 
        vs = [vectors.to_cartesian((0.5, 2 * pi * i / 20)) 
                for i in range(0,20)] #<1> 
        super().__init__(vs) 
        self.gravity = gravity #<2> 

#1 Defines the vertices of the BlackHole as a PolygonModel   

Note that the 20 vertices in our BlackHole are all 0.5 units from the origin at equally spaced 
angles, so the black hole appears approximately circular. Adding this line 

black_hole = BlackHole(0.1) 

creates a BlackHole object with gravity valued at 0.1, which is positioned at the origin by 
default. To make the black hole appear onscreen (figure 11.12), we need to draw it with each 
iteration of the game loop. In the following, I add a fill keyword argument to the draw_poly 
function to fill in the black hole and make it (appropriately) black: 

draw_poly(screen, black_hole, fill=True) 

 
Figure 11.12: Making the black hole show up in the center of our game screen 

The gravitational field created by our black hole is inspired by the vector field F(x, y) = (-x, -y), 
which points to the origin. If the black hole is centered at (xbh, ybh), the vector field g(x, y) = 
(xbh − x, ybh − y) points in the direction from (x, y) to (xbh, ybh). That means that as an arrow 
attached to the point (x, y), it points toward the center of the black hole. To make the strength 
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of the force field scale with the gravity of the black hole, we can multiply the vectors of the 
vector field by the gravity value: 

def gravitational_field(source, x, y): 
    relative_position = (x - source.x, y - source.y) 
    return vectors.scale(- source.gravity, relative_position) 

In this function, source is a BlackHole object, and its x and y properties indicate its center 
as a PolygonModel, while its gravity property is the value passed to it in its constructor. 
The equivalent force field in mathematical notation would be written like this: 

 
Here, Gbh represents the made-up gravity property of the black hole, and (xbh, ybh), once 
again, represents its position. The next step is to use this gravitational field to decide how 
objects should move. 

11.2.1 Making game objects feel gravity 

If this vector field works like a gravitational field, it tells us the force per unit mass on an object 
at position (x, y). In other words, the force on an object of mass m will be F(x, y) = m * g(x, 
y). If this is the only force our object feels, we can figure out its acceleration using Newton’s 
second law of motion: 

 

This last expression for acceleration has the mass m in both the numerator and denominator, 
so they cancel out. It turns out that the gravitational field vector is equal to the acceleration 
vector caused by gravity—it has nothing to do with the object’s mass. This calculation works for 
real gravitational fields as well, and it is why objects of different masses all fall at the same rate 
of about 9.81 meters per second near the Earth’s surface. In one iteration of the game loop 
taking an elapsed time Δt, the change in velocity of a spaceship or asteroid is determined by its 
(x, y) position as:  

 
We need to add some code to update the velocity of the spaceship as well as each asteroid in 
each iteration of the game loop. There are a few choices as to how to organize our code, and 
the one I’ll choose is to encapsulate all of the physics into the move method of PolygonModel 
objects. You might also remember that instead of having objects fly off the screen, we teleported 
them to the other side. Another small change I’ve made here is to add a global bounce flag 
that says whether objects teleport or simply bounce off the sides of the screen. I’ve done this 
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because if objects teleport, they instantly feel a different gravitational field; if they bounce 
instead, we get more intuitive physics. Here’s the new move method: 

def move(self, milliseconds,  
         thrust_vector, gravity_source): #<1> 

    tx, ty = thrust_vector 
    gx, gy = gravitational_field(src, self.x, self.y) 
    ax = tx + gx #<2> 
    ay = ty + gy 
    self.vx += ax * milliseconds/1000 #<3> 
    self.vy += ay * milliseconds/1000 

 
    self.x += self.vx * milliseconds / 1000.0 #<4> 

    self.y += self.vy * milliseconds / 1000.0 
 
    if bounce: #<5> 
        if self.x < -10 or self.x > 10: 
            self.vx = - self.vx 
        if self.y < -10 or self.y > 10: 
            self.vy = - self.vy 
    else: #<6> 
        if self.x < -10: 
            self.x += 20 
        if self.y < -10: 
            self.y += 20 
        if self.x > 10: 
            self.x -= 20 
        if self.y > 10: 
            self.y -=20 

#1 Passes in the thrust vector, which can be (0,0), and the gravity source (black hole) as parameters to the move 
method 

#2 Here the net force is the sum of the thrust vector and gravitational force vector. Assume the mass = 1 and the 
acceleration is the sum of the thrust and gravitational field. 

#3 Updates the velocity as before, using Δv = a*Δt 
#4 Updates the position vector as before, using Δs = v*Δt 
#5 If the global bounce flag is true, flips the x component of velocity when the object is about to leave the screen on the 

left or right, or flips the y component of velocity when the object is about to leave the screen through the top or 
bottom 

#6 Otherwise, uses the same teleportation effect as before when the object is about to leave the screen 

The remaining work is to call this move method for the spaceship as well as each asteroid in the 
game loop: 

while not done: 
    ... 
    for ast in asteroids: 
        ast.move(milliseconds, (0,0), black_hole) #<1> 
 
    thrust_vector = (0,0) #<2> 
 
    if keys[pygame.K_UP]: #<3> 
        thrust_vector=vectors.to_cartesian((thrust, ship.rotation_angle)) 
 
    elif keys[pygame.K_DOWN]: 
        thrust_vector=vectors.to_cartesian((-thrust, ship.rotation_angle)) 
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    ship.move(milliseconds, thrust_vector, black_hole) #<4> 

#1 For each asteroid, calls its move method with a thrust vector of 0 
#2 The ship’s thrust vector is also (0,0) by default. 
#3 If the up or down arrow is pressed, calculates the thrust_vector using the direction of the spaceship and the fixed 

thrust scalar value 
#4 Calls the move method for the spaceship to cause it to move 

Running the game now, you’ll see that objects start to be attracted by the black hole, and 
starting with zero velocity, the spaceship falls straight into it! Figure 11.13 shows a time-lapse 
photo of the ship’s acceleration. 

 
Figure 11.13: With no initial velocity, the spaceship falls into the black hole. 

With any other starting velocity and no thrust, the ship begins to orbit the black hole, tracing 
out the shape of an ellipse, or stretched out circle (figure 11.14). 
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Figure 11.14: With some initial velocity perpendicular to the black hole, the spaceship begins an elliptical orbit. 

It turns out that any object feeling no forces other than the gravity of the black hole either fall 
right in or enter into an elliptical orbit. Figure 11.15 shows a randomly initialized asteroid along 
with the spaceship. You can see that its trajectory is a different ellipse. 

 
Figure 11.15: An asteroid in another elliptical orbit around our black hole 
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You can try adding all of the asteroids back in. You’ll see that with 11 simultaneously accelerating 
objects, the game has become much more interesting! 

11.2.2 Exercises 

 
Exercise 11.1: Where do all of the vectors in the vector field (-2−x, 4−y) point? Plot the vector field to confirm your 
answer. 
Solution: This vector field is the same as the displacement vector (-2, 4) − (x, y), which is a vector pointing from a point 
(x, y) to (-2, 4). Therefore, we expect every vector in this vector field to point toward (-2, 4). Drawing this vector field 
confirms this. 

 
 

 
Mini-project 11.2: Suppose we have two black holes, both having gravity 0.1 and positioned at (-3, 4) and (2, 1), 
respectively. The gravitational fields are g1(x, y) = 0.1 ⋅ (-3 − x, 4 − y) and g2(x, y) = 0.1 ⋅ (2 − x, 1 − y). Calculate a 
formula for the total gravitational field g(x, y) due to both black holes. Is it equivalent to a single black hole? If so, why? 
Solution: At every position (x, y), an object with mass m feels two gravitational forces: m ⋅ g1(x, y) and m ⋅ g2(x, y). The 
vector sum of these forces is m(g1(x, y) + g2(x, y)). Per unit of mass, the force felt will be g1(x, y) + g2(x, y), which 
confirms that the total gravitational field vector is the sum of the gravitational field vectors due to each of the black 
holes. This total gravitational field is  

 

 
We can divide out a factor of 2 and rewrite as:  

 
This is the same as a single black hole with gravity 0.2, positioned at (0.5, 2.5). 
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Mini-project 11.3: In the asteroid game, add two black holes and allow these to feel each other’s gravity. Then move 
while these both also exert gravity on the asteroids and the spaceship. 
Solution: For a full implementation, see the source code. The key addition calls the move method for each black hole 

in each iteration of the game loop, passing it the list of all other black holes as sources of gravity: 
for bh in black_holes: 

    others = [other for other in black_holes if other != bh] 

    bh.move(milliseconds, (0,0), others) 
 

11.3 Introducing potential energy 
Now that we’ve seen the behavior of the spaceship and asteroids in our gravitational field, we 
can build our second model of how they behave using potential energy. We already have black 
holes working in the asteroid game, so the purpose of the rest of the chapter is to broaden your 
perspective on the underlying math. Vector fields, including gravitational fields, often arise as 
results of the calculus operation called the gradient, which is a critical tool in the remaining 
chapters of the book. 

The basic idea is as follows: instead of picturing gravity as a force vector at every point, pulling 
objects toward a source, we can think of objects in a gravitational field like marbles rolling 
around in a bowl. The marbles may roll back and forth, but they are always “pulled” back toward 
the bottom of the bowl as they roll away. A potential energy function essentially defines the 
shape of this bowl. You can see a preview of what the bowl looks like in the center image of 
figure 11.16. 

We’ll write potential energy as a function, taking a point (x, y) and returning a single number, 
representing the gravitational potential energy at the point (x, y). In terms of the bowl analogy, 
this is something like the height of the bowl at a given point. Once we implement a potential 
energy function in Python, we can visualize it in three ways: as a heatmap, which you saw at 
the beginning of this chapter, as a 3D graph, and as a contour map as shown in figure 11.16. 
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Figure 11.16: Three pictures of a scalar field: a heatmap, a graph, and a contour map 

These visualizations will help us picture potential energy functions in the final section of this 
chapter and in the remaining chapters of the book. 

11.3.1 Defining a potential energy scalar field 

Like a vector field, we can think of a scalar field as a function that takes (x, y) points as inputs. 
Instead of vectors, however, the outputs of this function are scalars. For instance, let’s work 
with the function U(x, y) = ½(x2 + y2), which defines a scalar field. Figure 11.17 shows that you 
can plug in a 2D vector, and the output is some scalar determined by the formula for U(x, y). 

 
Figure 11.17: As a function, a scalar field takes a point in the plane and produces a corresponding number. In 
this case, where (x, y) = (3, 1), the value of U(x, y) is ½(32 + 12) = 5. 
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The function U(x, y) turns out to be the potential energy function corresponding to the vector 
field F(x, y) = (-x, -y). I’ll need to do some more work to explain this mathematically, but we 
can confirm it qualitatively by picturing the scalar field U(x, y). 

One way to picture U(x, y) is to draw a 3D plot like figure 11.18, where U(x, y) is a surface of 
(x, y, z) points and where z = U(x, y). For instance, U(3, 1) = 5, so we would plot a first point 
above the point (3, 1) in the x,y plane at a z-coordinate of 5. 

 
Figure 11.18: To plot one point of U(x, y) = ½(x2 + y2), use (x, y) = (3, 1), then use U(3, 1) = 5 as the z-coordinate 

Plotting a point in 3D for every single value of (x, y) gives us a whole surface representing the 
scalar field U(x, y) and how it varies over the plane. In the source code, you’ll find a function, 
plot_scalar_field, that takes a function defining a scalar field, as well as x and y bounds, 
and draws the surface of 3D points representing the field: 

def u(x,y): 
    return 0.5 * (x**2 + y**2) 
     
plot_scalar_field(u, -5, 5, -5, 5) 

While there are several ways to visualize a scalar field, I’ll refer to the graph of the function U(x, 
y) as shown in figure 11.19. 
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Figure 11.19: A graph of the potential energy scalar field U(x, y) = ½(x2 + y2) 

This is the “bowl” from the previous analogy. It turns out this potential energy function gives 
the same model of gravity as the vector field F(x, y)= (-x, -y). We’ll see exactly why this is in 
section 11.4, but for now, we can confirm that the potential energy increases as the distance 
from the origin (0, 0) increases. In all radial directions, the height of the graph increases, 
meaning the value of U increases. 

11.3.2 Plotting a scalar field as a heatmap 

Another way to visualize a scalar function is to draw a heatmap. Instead of using a z-coordinate 
to visualize the value of U(x, y), we can use a color scheme. This allows us to plot the scalar 
field without leaving 2D. By including a color legend on the side (as in figure 11.20), we can see 
the approximate scalar value at (x, y) from the color at that point on the plot. 
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Figure 11.20: A heatmap of the function U(x,y) 

In the center of the plot in figure 11.20, near (0, 0), the color is darker, meaning the values of 
U(x, y) are lower. Toward the edges, the color is lighter, meaning the values of U(x, y) are 
higher. You can plot the potential energy function using the scalar_field_heatmap function 
you’ll find in the source code. 

11.3.3 Plotting a scalar field as a contour map 

Similar to a heatmap is a contour map. You may have seen a contour map before as the format 
of a topographical map, a map which shows the elevation of terrain over a geographical area. 
This kind of map consists of paths where the elevation is constant, so if you’re walking along 
the path shown in the map, you’re neither walking uphill or downhill. Figure 11.21 shows the 
analogous contour map for U(x, y), showing paths in the x,y plane where U(x, y) is equal to 10, 
20, 30, 40, 50, and 60. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 11.21: A contour map of U(x,y), showing curves where the value of U(x,y) is constant 

You can see that the curves are all circular and that they get closer together as they go outward. 
We can interpret this to mean that U(x, y) gets steeper as we get further from the origin. For 
instance, U(x, y) increases from 30 to 40 over a shorter distance than it takes to increase from 
10 to 20. You can plot the scalar field U as a contour map using the scalar_field_contour 
function from the source code. 

11.4 Connecting energy and forces with the gradient 
This notion of steepness is important—the steepness of a potential energy function tells us how 
much energy an object has to exert to move in that direction. As you might expect, the exertion 
required to move in a given direction is a measure of the force in the opposite direction. In the 
remainder of this section, we’ll get to a precise and quantitative version of this statement. 

As I mentioned in the introduction to this chapter, the gradient is an operation that takes a 
scalar field like potential energy and produces a vector field like a gravitational field. At every 
location (x, y) in the plane, the gradient vector field at that location points in the direction of 
fastest increase in the scalar field. In this section, I show you how to take the gradient of a 
scalar field U(x,y), which requires taking a derivative of U with respect to x and, separately, 
taking a derivative with respect to y. We’ll be able to show that the gradient of the potential 
energy function U(x,y) we’ve been working with is -F(x, y), where F(x, y) the gravitational field 
we implemented in our asteroid game. We’ll make extensive use of the gradient in the remaining 
chapters of this book. 
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11.4.1 Measuring steepness with cross sections 

There’s one more way of visualizing the function U(x, y) that makes it easy to see how steep it 
is at various points. Let’s focus on a specific point: (x, y) = (-5, 2). On a contour map like that 
shown in figure 11.22, this point is between the U = 10 and U = 20 curves, and in fact, U(-5, 
2) = 14.5. If we move in the +x direction, we hit the U = 10 curve, meaning that U decreases 
in the +x direction. If we instead move in the +y direction, we hit the U = 20 curve, meaning 
that U increases in this direction. 

 
Figure 11.22: Exploring the value of U(x, y) in the +x and +y directions from (-5, 2) 

Figure 11.22 shows that the steepness of U(x, y) depends on the direction. We can picture this 
by plotting the cross sections of U(x, y), where x = -5 and y = 2. Cross sections are slices of 
the graph of U(x, y) at fixed values of x or y. For example, figure 11.23 shows that the cross 
section of U(x, y) at x = -5 is a slice of U(x, y) in the plane x = -5. 
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Figure 11.23: The cross section of U(x, y) at x = -5 

In our functional terminology, we can partially apply U with x = -5 to get a function that accepts 
a single number y and returns the value of U. There’s also a cross section in the y direction at 
(5, 2). This is the cross section of U(x, y), where y = 2. Figure 11.24 shows its shape as a graph 
of U(x, y) after partially applying with y = 2. 
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Figure 11.24: The cross section of U(x, y) at y = 2 

Together, these cross sections tell us how U is changing at (-5, 2) in both the x and y directions. 
The slope of U(x, 2) at x = -5 is negative, telling us that moving in the +x direction from (-5, 
2) causes U to decrease. Likewise, the slope of U(-5, y) at y = 2 is positive, telling us that 
moving in the +y direction from (-5, 2) causes U to increase (figure 11.25). 

 
Figure 11.25: Cross sections show us that U(x, y) is increasing in the +y direction and decreasing in the +x 
direction. 
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We haven’t found the slope of the scalar field U(x, y) at this point, but we have found what we 
could call the slope in the x direction and the slope in the y direction. These values are called 
partial derivatives of U. 

11.4.2 Calculating partial derivatives 

You already know everything you need to know to find the previous slopes. Both U(-5, y) and 
U(x, 2) are functions of one variable, so you could approximate their derivatives by calculating 
the slope of small secant lines. 

For instance, if we want to find the partial derivative of U(x, y) with respect to x at the point (-
5, 2), we’re asking for the slope of U(x, 2) at x = -5. That is, we want to know how fast U(x, y) 
is changing in the x direction at the point (x, y) = (-5, 2). We could approximate this by plugging 
in a small value of Δx into the following slope calculation: 

 
We can also calculate the derivative exactly by writing the formula for U(x, 2). Because U(x, y) 
= ½(x2 + y2), we have U(x, 2) = ½(x2 + 22) = ½(x2 + 4) = 2 + (x2/2). Using the power rule for 
derivatives, the derivative of U(x, 2) with respect to x is 0 + 2x/2 = x. At x = -5, the derivative 
is -5. 

Notice that in both the slope approximation and the symbolic derivative process, the variable y 
doesn’t appear. Instead, we’re working with the constant value 2. This is to be expected because 
when we’re thinking about a partial derivative in the x direction, y isn’t changing. The general 
way to calculate partial derivatives symbolically is to take the derivative as if only one symbol 
(like x) is a variable, while all the other symbols (like y) are constants. 

Using this method, the partial derivative of U(x, y) with respect to x is ½(2x + 0) = x, and the 
partial derivative with respect to y is ½(0 + 2y) = y. By the way, the notation f’(x) we previously 
preferred for the derivative of a function f(x) is insufficient to extend to partial derivatives. When 
taking partial derivatives, you can take the derivative with respect to different variables, and 
you need to specify which one you’re working with. There’s another equivalent notation for the 
derivative of f’(x): 

 
(I use the ≡ sign to indicate that these notations are equivalent; they represent the same 
concept.) This is reminiscent of the slope formula Δf/Δx, but in this notation, df and dx instead 
represent infinitesimal changes in the value of f and x. The notation df/dx means the same thing 
as f’(x), but it makes it clearer that the derivative is taken with respect to x. For a partial 
derivative of a function like U(x, y), we can take the derivative with respect to either x or y. It’s 
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traditional to use different shaped d’s to indicate that we’re not taking an ordinary derivative 
(called a total derivative). The partial derivatives of U with respect to x and y are (respectively) 
written as follows: 

 and  
Here’s another example with a function q(x, y) = xsin(xy) + y. If we treat y as a constant and 
take the derivative with respect to x, we need to use the product rule and the chain rule. The 
result is the partial derivative with respect to x: 

 
To take the partial derivative with respect to y, we treat x as a constant, and we need to use 
the chain rule and the sum rule: 

 
It’s true that each of the partial derivatives only tells part of the story of how a function like U(x, 
y) changes at any point. Next, we combine them to gain a full understanding, analogous to the 
total derivative for a function of one variable. 

11.4.3 Finding the steepness of a graph with the gradient 

Let’s zoom in on the point (-5, 2) on the graph of U(x, y) (figure 11.26). Just as any smooth 
function f(x) looks like a straight line on a sufficiently small range of x values, it turns out the 
graph of a smooth scalar field looks like a plane in a small enough vicinity of the x,y plane. 
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Figure 11.26: Up close, the region of the graph of U(x, y) near (x, y) = (-5, 2) looks like a plane. 

Just as the derivative df/dx tells us about the slope of the line that approximates f(x) at a given 
point, the partial derivatives ∂U/∂x and ∂U/∂y tell us about a plane that approximates U(x, y) 
at a given point. The dotted lines in figure 11.26 show the x and y cross sections of U(x, y) at 
this point. In this window, they are approximately straight lines, and their slopes in the x,z and 
y,z planes are close to the partial derivatives ∂U/∂x and ∂U/∂y. 

I haven’t proven it, but suppose there is a plane that best approximates U(x, y) near (-5, 2), 
and because we can’t distinguish it, we can pretend the graph in figure 11.26 is that plane for 
a moment. The partial derivatives tell us how much it is slanted in the x and y directions. On a 
plane, there are actually two better directions to think about. First of all, there’s a direction on 
the plane you could walk without gaining or losing elevation. In other words, this is the line in 
the plane that is parallel to the x,y plane. For the plane that approximates U(x, y) at (-5, 2), 
that turns out to be in the direction (2, 5) as shown by figure 11.27. 
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Figure 11.27: Walking along the graph of U(x,y) from (x,y) = (-5,2) in the direction of (2,5), you won’t gain or lose 
elevation. 

The walker in figure 11.27 is having an easy time because they’re not climbing or descending 
the plane when walking in this direction. If, however, the walker turns 90° to the left, they 
would be walking uphill in the steepest direction possible. That is the direction (-5, 2), which is 
perpendicular to (2, 5).  

This direction of steepest ascent happens to be a vector whose components are the partial 
derivatives of U at a given point. I gave one illustration of this instead of proving it, but this fact 
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is true in general. For a function U(x, y), the vector of its partial derivatives is called its gradient 
and written ∇U. It gives the magnitude and direction of steepest ascent of U at a given point: 

 
Because we have formulas for the partial derivatives, we can tell, for instance, that ∇U(x, y) = 
(x, y) for our function. The function ∇U, which is the gradient of U, is an assignment of a vector 
to every point in the plane, so it is indeed a vector field! The plot of ∇U shows us at every point 
(x, y) which direction is uphill on the graph of U(x, y), as well as how steep it is (figure 11.28). 

 
Figure 11.28: The gradient ∇U is a vector field telling us the magnitude and direction of steepest ascent on the 
graph of U at any point (x, y). 

The gradient is a way of connecting a scalar field with a vector field. It turns out that this gives 
the connection between potential energy and force. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

11.4.4 Calculating force fields from potential energy with the gradient 

As a mathematical operation, the gradient is the closest thing to the derivative of a scalar field. 
It has all the information needed to find the direction of steepest ascent of the scalar field, the 
slope along the x or y directions, or the plane of best approximation. But from the perspective 
of physics, it’s not what we’re looking for. After all, there’s no object in nature that 
spontaneously moves uphill. 

Neither the spaceship in the asteroid game nor the ball rolling around in the bowl would feel 
forces that impel them toward regions of higher potential energy. As we’ve discussed, they 
would need to apply a force or sacrifice some kinetic energy to gain more potential energy. For 
that reason, the right description of the force an object feels is the negative gradient of potential 
energy, which points in the direction of steepest descent rather than steepest ascent. If U(x, y) 
represents the scalar field of potential energy, then the associated force field F(x, y) can be 
calculated by: 

 
Let’s try a fresh example. What kind of force field would be produced by the following potential 
energy function? 

 
We can get a sense for how this function behaves by plotting it. 
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Figure 11.29: The potential energy function V(x, y) shown in 3D 

Figure 11.29 illustrates that this potential energy function has a double bowl shape with two 
minimum points and a hump between them. What does the force field associated with this 
potential energy function look like? To find out, we need to take the negative gradient of V: 

 
We can get the partial derivative of V with respect to x by treating y like a constant, so the 
terms 1 and y2 don’t contribute. The result is just the derivative of -2x2 + x6 with respect to x, 
which is -4x + 6x5. 

For the partial derivative of V with respect to y, we treat x like a constant, so the only term that 
contributes to the result is y2 having a derivative 2y. The negative gradient of V(x, y) is 
therefore: 

 
Plotting this vector field, figure 11.30 shows that the force field points toward the points of 
lowest potential energy. An object feeling this force field would experience these two points as 
exerting an attractive force. 
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Figure 11.30: A plot of the vector field -∇V(x, y), the force field associated with the potential energy function V(x, 
y). This is an attractive force toward the two points shown. 

The negative gradient of potential energy is the direction nature prefers: it is the direction to 
release stored energy. Objects are naturally pushed toward states where their potential energy 
is minimized. The gradient is an important tool for finding optimum values of scalar fields, as 
we’ll see in the next chapters. Specifically, in the last part of this book, I’ll show you how 
following the negative gradient in search of an optimal value mimics the process of “learning” 
in certain machine learning algorithms. 

11.4.5 Exercises 

 

Exercise 11.4: Plot the cross section of h(x, y) = eysin(x), where y = 1. Then plot the cross section of h(x, y), where x = 

𝜋𝜋/6. 
Solution: The cross section of h(x, y) where y = 1 is a function of only x: h(x, 1) = e1sin(x) = e ⋅ sin(x) as shown here: 
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Where x = 𝜋𝜋/6, the value of h(x, y) depends only on y. That is, h(𝜋𝜋/6, y) = eysin(𝜋𝜋/6) = ey/2. The graph is 

 
 

 
Exercise 11.5: What are the partial derivatives of the function h(x, y) from the first exercise? What is the gradient? What 
is the value of the gradient at (x, y) = (𝜋𝜋/6, 1)? 

Solution: The partial derivative of eysin(x) with respect to x is obtained by treating y as a constant. ey is therefore 

treated as a constant as well. The result is 

 
Likewise, we get the partial derivative with respect to y by treating x and, therefore, sin(x) as constants: 

 
The gradient ∇h(x, y) is the vector field whose components are the partial derivatives: 

 
At (x, y) = (𝜋𝜋/6, 1), this vector field evaluates as follows: 
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Exercise 11.6: Prove (-5, 2) is perpendicular to (2, 5). 
Solution: This is a review from chapter 2. These two vectors are perpendicular because their dot product is zero: (-5, 2) * 
(2, 5) = -10 + 10 = 0. 
 

 
Mini-project 11.7: Let z = p(x, y) be the equation of the plane that best approximates U(x, y) at (-5,2). Figure out (from 
scratch!) an equation for p(x, y) and the line contained in p and passing through (-5, 2), which is parallel to the x, y 
plane. This line should be parallel to the vector (2, 5, 0) as I claimed in the previous exercise. 
Solution: Remember that the formula for U(x, y) is ½(x2 + y2). The value of U(-5, 2) is 14.5, so the point (x, y, z) = (-5, 2, 
14.5) is on the graph of U(x, y) in 3D. 
Before we think about the formula for the plane of best approximation for U(x, y), let’s review how we got the line of 
best approximation for a function f(x). The line that best approximates a function f(x) at a point x0 is the line that passes 
through the point (x0, f(x0)) and has a slope f’(x0). Those two facts ensure that both the value and the derivative of f(x) 
agree with the line that approximates it. 
Following this model, let’s look for the plane p(x, y), whose value and both partial derivatives match at (x, y) = (-5, 2). 
That means we must have p(-5, 2) = 14.5, while ∂p/∂x = -5 and ∂p/∂y = 2. As a plane, p(x, y) has the form p(x, y) = ax + 
by + c for some numbers a and b (do you remember why?). The partial derivatives are  

 and  
To make them match, the formula must be p(x, y) = -5x + 2y + c, and to satisfy p(-5, 2) = 14.5, it must be that c = -14.5. 
Therefore, the formula for the plane of best approximation is p(x, y) = -5x + 2y − 14.5. 
Now, let’s look for the line in the plane p(x, y) passing through (-5, 2), which is parallel to the x,y plane. This is the set of 
points (x, y) such that p(x, y) = p(-5, 2), meaning that there is no elevation change between (-5, 2) and (x, y). 
If p(x, y) = p(-5, 2), then -5x + 2y − 14.5 = -5 * -5 + 2 * 2 − 14.5. That simplifies to the equation of a line: -5x + 2y = 29. 
This line is equivalent to the set of vectors (-5, 2, 14.5) + r * (2, 5, 0), where r is a real number, so it is indeed parallel to 
(2, 5, 0). 
 

11.5 Summary 
• A vector field is a function that takes a vector both as input and output. Specifically, we 

picture it as an assignment of an arrow vector to every point in a space. 
• Gravitational force can be modeled by a vector field. The value of the vector field at any 

point in space tells you how strong and in what direction an object is pulled by the force 
of gravity. 

• To simulate the motion of an object in a vector field, you need to use its position to 
calculate the strength and direction of the force field where it is. In turn, the value of the 
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force field tells you the force on the object, and Newton’s second law tells you the 
resulting acceleration. 

• Potential energy is stored energy that has the potential to create motion. The potential 
energy for an object in a force field is determined by where the object is. 

• Potential energy can be modeled as a scalar field: an assignment of a number to every 
point in space, which is the amount of potential energy an object would have at that 
point. 

• There are several ways to picture a scalar field in 2D: as a 3D surface, a heatmap, a 
contour map, or a pair of cross-section graphs. 

• The partial derivatives of a scalar field give the rate of change in the value of the field 
with respect to the coordinates. For instance, if U(x, y) is a scalar field in 2D, there are 
partial derivatives with respect to x and y. 

• Partial derivatives are the same as the derivatives of a cross section of the scalar field. 
You can calculate the partial derivative with respect to one variable by treating the other 
variables as constants. 

• The gradient of a scalar field U is a vector whose components are partial derivatives of U 
with respect to each of the coordinates. The gradient points in the direction of steepest 
ascent for U or the direction in which U increases most rapidly. 

• The negative gradient of a potential energy function corresponding to a force field tells 
us the vector value of the force field at that point. This means that objects are pushed 
towards regions of lower potential energy. 
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Optimizing a physical system 

This chapter covers 

• Building and visualizing a simulation for a projectile 
• Finding maximal and minimal values for a function using derivatives 
• Tuning simulations with parameters  
• Visualizing spaces of input parameters for simulations 
• Implementing gradient ascent to maximize functions of several variables 

For most of the last few chapters, we’ve focused on a physical simulation for a video game. This 
is a fun and simple example to work with, but there are far more important and lucrative 
applications. For any big feat of engineering like sending a rocket to Mars, building a bridge, or 
drilling an oil well, it’s important to know that it’s going to be safe, successful, and on-budget 
before you attempt it. In each of these projects, there are quantities you want to optimize. For 
instance, you may want to minimize the travel time for your rocket, minimize the amount or 
cost of concrete in a bridge, or maximize the amount of oil produced by your well. 

To learn about optimization, we’ll focus on the simple example of a projectile; namely, a 
cannonball being fired from a cannon. Assuming the cannonball comes out of the barrel at the 
same speed every time, the launch angle will decide the trajectory (figure 12.1). 
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Figure 12.1: Trajectories for a cannonball fired at four different launch angles 

As you can see in figure 12.1, four different launch angles produce four different trajectories. 
Among these, 45° is the launch angle that sends the cannonball the furthest, while 80° is the 
angle that sends it the highest. These are only a few angles of all of the possible values between 
0 and 90°, so we can’t be sure they are the best. Our goal is to systematically explore the range 
of possible launch angles to be sure we’ve found the one that optimizes the range of the cannon. 

To do this, we first build a simulator for the cannonball. This simulator will be a Python function 
that takes a launch angle as input, runs Euler’s method (as we did in chapter 9) to simulate the 
moment-by-moment motion of the cannonball until it hits the ground, and outputs a list of 
positions of the cannonball over time. From the result, we’ll extract the final horizontal position 
of the cannonball, which will be the landing position or range. Putting these steps together, we 
implement a function that takes a launch angle and returns the range of the cannonball at that 
angle (figure 12.2). 

 
Figure 12.2: Computing the range of a projectile using a simulator 

Once we have encapsulated all of this logic in a single Python function called landing_position, 
which computes the range of a cannonball as a function of its launch angle, we can think about 
the problem of finding the launch angle that maximizes the range. We can do this in two ways: 
first, we make a graph of the range versus the launch angle and look for the largest value (figure 
12.3). 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 12.3: Looking at a plot of range vs. launch angle, we can see the approximate value of the launch angle 
that produces the longest range. 

The second way we can find the optimal launch angle is to set our simulator aside and find a 
formula for the range r(𝜃𝜃) of the projectile as a function of the launch angle 𝜃𝜃. This should 
produce identical results as the simulation, but because it is a mathematical formula, we can 
take its derivative using the rules from chapter 10. The derivative of the landing position with 
respect to the launch angle tells us how much increase in the range we’ll get for small increases 
in the launch angle. At some angle, we can see that we get diminishing returns—increasing the 
launch angle causes the range to decrease and we’ll have passed our optimal value. Before this, 
the derivative of r(𝜃𝜃) will instantaneously be zero, and the value of 𝜃𝜃 where the derivative is 
zero happens to be the maximum value. 

Once we’ve warmed up using both of these optimization techniques on our 2D simulation, we 
can try a more challenging 3D simulation, where we can control the upward angle of the cannon 
as well as the lateral direction it is fired. If the elevation of the terrain varies around the cannon, 
the direction can have an impact on how far the cannonball flies before hitting the ground (figure 
12.4). 
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Figure 12.4: With uneven terrain, the direction we fire the cannon can affect the range of the cannonball as well. 

For this example, let’s build a function r(𝜃𝜃, 𝜙𝜙), taking two input angles 𝜃𝜃 and 𝜙𝜙 and outputting a 
landing position. The challenge is to find the pair (𝜃𝜃, 𝜙𝜙) that maximize the range of the cannon. 
This example lets us cover our third and most important optimization technique: gradient 
ascent.  

As we learned in the last chapter, the gradient of r(𝜃𝜃, 𝜙𝜙) at a point (𝜃𝜃, 𝜙𝜙) is a vector pointing in 
the direction that causes r to increase most rapidly. We’ll write a Python function called 
gradient_ascent that takes as input a function to optimize, along with a pair of starting inputs, 
and uses the gradient to find higher and higher values until it reaches the optimal value. 

The mathematical field of optimization is a broad one, and I hope to give you a sense of some 
basic techniques. All of the functions we’ll work with are smooth, so you will be able to make 
use of the many calculus tools you’ve learned so far. Also, the way we approach optimization in 
this chapter sets the stage for optimizing computer “intelligence” in machine learning 
algorithms, which we turn to in the final chapters of the book. 

12.1 Testing a projectile simulation 
Our first task is to build a simulator that computes the flight path of the cannonball. The 
simulator will be a Python function called trajectory. It takes the launch angle, as well as a 
few other parameters that we may want to control, and returns the positions of the cannonball 
over time until it collides with Earth. To build this simulation, we turn to our old friend from 
chapter 9—Euler’s method. 

As a reminder, we can simulate motion with Euler’s method by advancing through time in small 
increments (we’ll use 0.01 seconds). At each moment, we’ll know the position of the cannonball, 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

as well as its derivatives: velocity and acceleration. The velocity and acceleration let us 
approximate the change in position to the next moment, and we’ll repeat the process until the 
cannonball hits the ground. As we go, we can save the time, x and y positions of the cannonball, 
at each step and output them as the result of the trajectory function. 

Finally, we’ll write functions that take the results we get back from the trajectory function and 
measure one numerical property. The functions landing_position, hang_time, and 
max_height tell us the range, the time in the air, and the maximum height of the cannonball, 
respectively. Each of these will be a value we can subsequently optimize for. 

12.1.1 Building a simulation with Euler’s method 

In our first 2D simulation, we call the horizontal direction the x direction and the vertical direction 
the z direction. That way we won’t have to rename either of these when we add another 
horizontal direction. We call the angle that the cannonball is launched 𝜃𝜃 and the velocity of the 
cannonball v as shown in figure 12.5. 

 
Figure 12.5: The variables in our projectile simulation 

The speed, v, of a moving object is defined as the magnitude of its velocity vector, so v = |v|. 
Given the launch angle 𝜃𝜃, the x and z components of the cannonball’s velocity are vx = |v| ⋅ 

cos(𝜃𝜃) and vz = |v| ⋅ sin(𝜃𝜃). I’ll assume that the cannonball leaves the barrel of the cannon at 
time t = 0 and with (x, z) coordinates (0, 0), but I’ll also include a configurable launch height. 
Here’s the basic simulation using Euler’s method: 

def trajectory(theta,speed=20,height=0, 
               dt=0.01,g=-9.81): #<1> 

    vx = speed * cos(pi * theta / 180) #<2> 
    vz = speed * sin(pi * theta / 180) 
    t,x,z = 0, 0, height 
    ts, xs, zs = [t], [x], [z] #<3> 
    while z >= 0: #<4> 
        t += dt   #<5> 
        vz += g * dt 
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        x += vx * dt 
        z += vz * dt 
        ts.append(t) 
        xs.append(x) 
        zs.append(z) 
    return ts, xs, zs #<6> 

#1 Additional inputs: the time step dt, gravitational field strength g, and angle theta (in degrees) 
#2 Calculates the initial x and z components of velocity, converting the input angle from degrees to radians 
#3 Initializes lists that hold all the values of time and the x and z positions over the course of the simulation 
#4 Runs the simulation only while the cannonball is above ground 
#5 Updates time, z velocity, and position. There are no forces acting in the x direction, so the x velocity is unchanged. 
#6 Returns the list of t, x, and z values, giving the motion of the cannonball 

You’ll find a plot_trajectories function in the source code for this book that takes the outputs 
of one or more results of the trajectory function and passes them to Matplotlib’s plot function, 
drawing curves that show the path of each cannonball. For instance, figure 12.6 shows plotting 
a 45° launch next to a 60° launch, which is done using the following code: 

plot_trajectories(  
    trajectory(45), 
    trajectory(60)) 

 
Figure 12.6: An output of the plot_trajectories function showing the results of a 45° and 60° launch 
angle. 

We can already see that the 45° launch angle produces a greater range and that the 60° launch 
angle produces a greater maximum height. To be able to optimize these properties, we need to 
measure them from the trajectories. 

12.1.2 Measuring properties of the trajectory 

It’s useful to keep the raw output of the trajectory in case we want to plot it, but sometimes 
we’ll want to focus on one number that matters most. For instance, the range of the projectile 
is the last x-coordinate of the trajectory, which is the last x position before the cannonball hits 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

the ground. Here’s a function that takes the result of the trajectory function (parallel lists with 
time and the x and z positions), and extracts the range or landing position. For the input 
trajectory, traj, traj[1] lists the x-coordinates, and traj[1][-1] is the last entry in the list: 

def landing_position(traj): 
    return traj[1][-1] 

This is the main metric of a projectile’s trajectory that interests us, but we can also measure 
some other ones. For instance, we might want to know the hang time (or how long the 
cannonball stays in the air) or its maximum height. We can easily create other Python functions 
that measure these properties from simulated trajectories; for example, 

def hang_time(traj): 
    return traj[0][-1] #<1> 
 
def max_height(traj): 
    return max(traj[2]) #<2> 

#1 Total time in the air is equal to the last time value, the time on the clock when the projectile hits the ground. 
#2 The maximum height is the maximum among the z positions, the third list in the trajectory output. 

To find an optimal value for any of these metrics, we need to explore how the parameters 
(namely, the launch angle) affect them.  

12.1.3 Exploring different launch angles 

The trajectory function takes a launch angle and produces the full time and position data for 
the cannonball over its flight. A function like landing_position takes this data and produces a 
single number. Composing these two together (figure 12.7), we get a function for landing 
position in terms of the launch angle, where all other properties of the simulation are assumed 
constant. 

 
Figure 12.7: Landing position as a function of the launch angle 

One way to test the effect of the launch angle on a landing position is to make a plot of the 
resulting landing position for several different values of the launch angle (figure 12.8). To do 
this, we need to calculate the result of the composition 
landing_position(trajectory(theta)) for several different values of theta and pass these 
to Matplotlib’s scatter function. Here, for example, I use range(0,95,5) as the launch angles. 
This is every angle from zero to 90 in increments of 5:  

import matplotlib.pyplot as plt 
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angles = range(0,90,5) 
landing_positions = [landing_position(trajectory(theta))  

                     for theta in angles] 
plt.scatter(angles,landing_positions) 

 
Figure 12.8: A plot of the landing position vs. the launch angle for the cannon for several different values of the 
launch angle 

From this plot, we can guess what the optimal value is. At a launch angle of 45°, the landing 
position is maximized at little over 40 meters from the launch position. In this case, 45° turns 
out to be the exact value of the angle that maximizes the landing position. In the next section, 
we’ll use calculus to confirm this maximum value without having to do any simulation. 

12.1.4 Exercises 

 
Exercise 12.1: How far does the cannonball go when fired at an angle of 50° from an initial height of zero? How about 
if it is fired at an angle of 130°? 
Solution: At 50°, the cannonball goes about 40.1 meters in the positive direction, while at 130°, it goes 40.1 meters in 
the negative direction: 
>>> landing_position(trajectory(50)) 

40.10994684444007 

>>> landing_position(trajectory(130)) 

-40.10994684444007 

This is because 130° from the positive x-axis is the same as 50° from the negative x-axis. 
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Mini-project 12.2: Enhance the plot_trajectories function to draw a large dot on the trajectory graph at each 
passing second so we can see the passing of time on the plot. 
Solution: Here are the updates to the function. It looks for the index of the nearest time after each whole second and 
makes a scatter plot of (x, z) values at each of these indices: 
def plot_trajectories(*trajs,show_seconds=False): 

    for traj in trajs: 

        xs, zs = traj[1], traj[2] 

        plt.plot(xs,zs) 

        if show_seconds: 

            second_indices = [] 

            second = 0 

            for i,t in enumerate(traj[0]): 

                if t>= second: 

                    second_indices.append(i) 

                    second += 1 

            plt.scatter([xs[i] for i in second_indices],  

                        [zs[i] for i in second_indices]) 

      ... 

As a result, you can picture the elapsed time for each of the trajectories you plot; for example, 
plot_trajectories( 

    trajectory(20),  

    trajectory(45), 

    trajectory(60), 

    trajectory(80),  

    show_seconds=True) 

 
Plots of four trajectories with dots showing their positions at each whole number of seconds. 
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Exercise 12.3: Make a scatter plot of hang time versus angle for angles between 0 and 180°. Which launch angle 
produces the maximum hang time? 
Solution: 
test_angles = range(0,181,5) 

hang_times = [hang_time(trajectory(theta)) for theta in test_angles] 

plt.scatter(test_angles, hang_times) 

 
A plot of the hang time of the cannonball as a function of the launch angle 
It appears that a launch angle of roughly 90° yields the longest hang time of just about 4 seconds. This makes sense 
because 𝜃𝜃 = 90° yields the initial velocity with the largest vertical component. 
 

 
Mini-project 12.4: Write a function plot_trajectory_metric that plots the result of any metric we want over a 

given set of theta (𝜃𝜃) values. For instance, 
plot_trajectory_metric(landing_position,[10,20,30])  

makes a scatter plot of landing positions versus launch angle for the launch angles 10°, 20°, and 30°. 
As a bonus, pass the keyword arguments from plot_trajectory_metric to the internal calls of the trajectory 
function, so you can rerun the test with a different simulation parameter. For instance, this code makes the same plot 
but simulated with a 10-meter initial launch height: 
plot_trajectory_metric(landing_position,[10,20,30], height=10) 

Solution: 
def plot_trajectory_metric(metric,thetas,**settings): 

    plt.scatter(thetas, 

                [metric(trajectory(theta,**settings))  

                 for theta in thetas]) 

We can make the plot from the previous exercise by running the following: 

plot_trajectory_metric(hang_time, range(0,181,5)) 
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Mini-project 12.5: What is the approximate launch angle that yields the greatest range for the cannonball with a 10-
meter initial launch height? 
Solution: Using the plot_trajectory_metric function from the preceding mini-project, we can simply run: 

plot_trajectory_metric(landing_position,range(0,90,5), height=10) 

 
A plot of range of the cannonball vs. launch angle with a 10 meter launch height 
The optimal launch angle from a height of 10 meters is about 40°. 
 

12.2 Calculating the optimal range 
Using calculus, we can compute the maximum range for the cannon, as well as the launch angle 
that produces it. This actually takes two separate applications of calculus. First, we need to come 
up with an exact function that tells us the range r as a function of the launch angle 𝜃𝜃. As a 
warning, this will take quite a bit of algebra. I’ll carefully walk you through all the steps, so don’t 
worry if you get lost; you’ll be able to jump ahead to the final form of the function r(𝜃𝜃) and 
continue reading. 

Then I show you a trick using derivatives to find the maximum value of this function r(𝜃𝜃), and 
the angle 𝜃𝜃 that produces it. Namely, a value of 𝜃𝜃 that makes the derivative r’(𝜃𝜃) equal zero is 
also the value of 𝜃𝜃 that yields the maximum value of r(𝜃𝜃). It might not be immediately obvious 
why this works, but it will become clear once we examine the graph of r(𝜃𝜃) and study its 
changing slope. 

12.2.1 Finding the projectile range as a function of the launch angle 

The horizontal distance traveled by the cannonball is actually pretty simple to calculate. The x 
component of the velocity vx is constant for its entire flight. For a flight of total time Δt, the 
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projectile travels a total distance of r = vx ⋅ Δt. The challenge is finding the exact value of that 
elapsed time Δt. 

That time, in turn, depends on the z position of the projectile over time, which is a function z(t). 
Assuming the cannonball is launched from an initial height of zero, the first time that z(t) = 0 
is when it’s launched at t = 0. The second time is the elapsed time we’re looking for. Figure 12.9 
shows the graph of z(t) from the simulation with 𝜃𝜃 = 45°. Note that its shape looks a lot like the 
trajectory, but the horizontal axis (t) now represents time. 

trj = trajectory(45) 
ts, zs = trj[0], trj[2] 
plt.plot(ts,zs) 

 
Figure 12.9: A plot of z(t) for the projectile showing the launching and landing times where z = 0. We can see 
from the graph that the elapsed time is about 2.9 seconds. 

We know z’’(t) = g = -9.81, which is the acceleration due to gravity. We also know the initial z 
velocity, z’(0) = |v| ⋅ sin(𝜃𝜃), and the initial z position, z(0) = 0. To recover the position function 
z(t), we need to integrate the acceleration z’’(t) twice. The first integral gives us velocity: 

 
The second integral gives us position: 

 
We can confirm that this formula matches the simulation by plotting it (figure 12.10). It is nearly 
indistinguishable from the simulation. 

def z(t): #<1> 
    return 20*sin(45*pi/180)*t + (-9.81/2)*t**2 
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plot_function(z,0,2.9) 

#1 A direct translation of the result of the integral, z(t), into Python code 

 
Figure 12.10: Plotting the exact function z(t) on top of the simulated values 

For notational simplicity, let’s write the initial velocity |v|sin(𝜃𝜃) as vz so that z(t) = vzt + gt2/2. 
We want to find the value of t that makes z(t) = 0, which is the total hang time for the 
cannonball. You may remember how to find that value from high school algebra, but if not, let 
me remind you quickly. If you want to know what value of t solves an equation at2 + bt + c = 
0, all you have to do is plug the values a, b, and c into the quadratic formula: 

 
An equation like at2 + bt + c = 0 can be satisfied twice; both times when our projectile hits z = 
0. The symbol ± is shorthand to let you know that using a + or − at this point in the equation 
gives you two different (but valid) answers. 

In the case of solving z(t) = vzt + gt2/2 = 0, we have a = g/2, b = vz and c = 0. Plugging into 
the formula, we find: 
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Treating the ± symbol as a + (plus), the result is t = (-vz + vz)/g = 0. This says that z = 0 
when t = 0, which is a good sanity check: it confirms that the cannonball starts at z = 0. The 
interesting solution is when we treat ± as a − (minus). In this case, the result is t = (-vz − vz)/g 
= -2vz/g. 

Let’s confirm the result makes sense. With an initial speed of 20 meters per second and a launch 
angle of 45° as we used in the simulation, the initial z velocity, vz, is -2 ⋅ (20 ⋅ sin(45°))/-9.81 
≈ 2.88. This closely matches the result of 2.9 seconds that we read from the graph. 

This gives us confidence in calculating the hang time Δt as Δt = -2vz/g or Δt = -2|v|sin(𝜃𝜃)/g. 

Because the range is r = vx ⋅ Δt = |v|cos(𝜃𝜃) ⋅ Δt, the full expression for the range r as a function 
of the launch angle 𝜃𝜃 is 

 
We can plot this side by side with the simulated landing positions at various angles as in figure 
12.11 and see that it agrees. 

def r(theta): 
    return (-2*20*20/-9.81)*sin(theta*pi/180)*cos(theta*pi/180) 
 
plot_function(r,0,90) 

 
Figure 12.11: Our calculation of projectile range as a function of the launch angle r(𝜃𝜃), which matches our 
simulated landing positions 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

Having a function r(𝜃𝜃) is a big advantage over repeatedly running the simulator. First of all, it 
tells us the range of the cannon at every launch angle, not just a handful of angles that we 
simulated. Second, it is much less computationally expensive to evaluate this one function than 
to run hundreds of iterations of Euler’s method. For more complicated simulations, this could 
make a big difference. Additionally, this function gives us the exact result rather than an 
approximation. The final benefit, which we’ll make use of next, is that the function r(𝜃𝜃) is 
smooth, so we can take its derivatives. This gives us an understanding of how the range of the 
projectile changes with respect to the launch angle. 

12.2.2 Solving for the maximum range 
Looking at the graph of r(𝜃𝜃) in figure 12.12, we can set our expectations for what the derivative 
r’(𝜃𝜃) will look like. As we increase the launch angle from zero, the range increases as well for a 
while but at a decreasing rate. Eventually, increasing the launch angle begins to decrease the 
range. 

The key observation to make is that while r’(𝜃𝜃) is positive, the range is increasing with respect 
to 𝜃𝜃. Then the derivative r’(𝜃𝜃) crosses below zero, and the range decreases from there. It is 
precisely at this angle (where the derivative is zero) that the function r(𝜃𝜃) achieves its maximum 
value. You can visualize this by seeing that the graph of r(𝜃𝜃) in figure 12.12 hits its maximum 
when the slope of the graph is zero. 

 
Figure 12.12: The graph of r(𝜃𝜃) hits its maximum when the derivative is zero and, therefore, the slope of the 
graph is zero. 

We should be able to take the derivative of r(𝜃𝜃) symbolically, find where it equals zero between 
0° and 90°, and this should agree with the rough maximum value of 45°. Remember that the 
formula for r is  
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Because -2|v|2/g is constant with respect to 𝜃𝜃, the only hard work is using the product rule on 
sin(𝜃𝜃)cos(𝜃𝜃). The result is 

 
Notice that I factored out the minus sign. If you haven’t seen this notation before, sin2(𝜃𝜃) means 
(sin(𝜃𝜃))2. The value of the derivative r’(𝜃𝜃) is zero when the expression sin2(𝜃𝜃) − cos2(𝜃𝜃) is zero 
(in other words, we can ignore the constants). There are a few ways to figure out where this 
expression is zero, but a particularly nice one is to use the trigonometric identity, cos(2𝜃𝜃) = 
cos2(𝜃𝜃) − sin2(𝜃𝜃), which reduces our problem even further. Now we need to figure out where 
cos(2𝜃𝜃) = 0.  

The cosine function is zero at 𝜋𝜋/2 plus any multiple of 𝜋𝜋, or 90° plus any multiple of 180° (that 
is, 90°, 270°, 430°, and so on). If 2𝜃𝜃 is equal to these values, 𝜃𝜃 could be half of any of these 
values: 45°, 135°, 215°, and so on. 

Of these, there are two interesting results. First, 𝜃𝜃 = 45° is the solution between 𝜃𝜃 = 0 and 𝜃𝜃 = 
90°, so it is both the solution we expected and the solution we’re looking for! The second 
interesting solution is 135° because this is the same as shooting the cannonball at 45° in the 
opposite direction (figure 12.13). 

 
Figure 12.13: In our model, shooting the cannonball at 135° is like shooting at 45° in the opposite direction. 

At angles of 45° and 135°, the resulting ranges are 

>>> r(45) 
40.774719673802245 
>>> r(135) 
-40.77471967380224 
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It turns out that these are the extremes of where the cannonball can end up, with all other 
parameters equal. A launch angle of 45° produces the maximum landing position, while a launch 
angle of 135° produces the minimum landing position. 

12.2.3 Identifying maxima and minima 

To see the difference between the maximum range at 45° and the minimum range at 135°, we 
can extend the plot of r(𝜃𝜃). Remember, we found both of these angles because they were at 
places where the derivative r’(𝜃𝜃) was zero (figure 12.14). 

 
Figure 12.14: The angles 𝜃𝜃 = 45° and 𝜃𝜃 = 135° are the two values between 0 and 180 where r’(𝜃𝜃) = 0. 

While maxima (the plural of “maximum”) of smooth functions occur where the derivative is zero, 
the converse is not always true: not every place where the derivative is zero yields a maximum 
value. As we see in figure 12.14 at 𝜃𝜃 = 135°, it can also yield a minimum value of a function. 

You need to be cautious of the global behavior of functions as well, because the derivative can 
be zero at what’s called a local maximum or minimum, where the function briefly obtains a 
maximum or minimum value, but it’s real, global maximum or minimum values lie elsewhere. 
Figure 12.15 shows a classic example: y = x3 − x. Zooming in on the region where -1 < x < 1, 
there are two places where the derivative is zero, which look like a maximum and minimum, 
respectively. When you zoom out, you see that neither of these is the maximum or minimum 
value for the whole function because it goes off to infinity in both directions. 
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Figure 12.15: Two points that are a local minimum and local maximum, but neither is the minimum or 
maximum value for the function. 

As another confounding possibility, a point where the derivative is zero may not even be a local 
minimum or maximum. For instance, the function y = x3 has a derivative of zero at x = 0 (figure 
12.16). This point just happens to be a place where the function x3 stops increasing 
momentarily. 

 
Figure 12.16: For y = x3, the derivative is zero at x = 0, but this is not a minimum or maximum value. 
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I won’t go into the technicalities of telling whether a point with a zero derivative is a minimum, 
maximum, or neither, or how to distinguish local minima and maxima from global ones. The key 
idea is that you need to fully understand the behavior of a function before you can confidently 
say you’ve found an optimal value. With this in mind, let’s move on to some more complicated 
functions to optimize and some new techniques for optimizing them. 

12.2.4 Exercises 

 
Exercise 12.6: Use the formula for elapsed time, Δt, in terms of the launch angle 𝜃𝜃 to find the angle that maximizes the 
hang time of the cannonball. 

Solution: The time in the air is t = 2vz /g = 2vsin(𝜃𝜃)/g where the initial speed of the cannonball is v = |v|. This is 

maximized when sin(𝜃𝜃) is maximized. We don’t need calculus for this: the maximum value of sin(𝜃𝜃) for 0 ≤ 𝜃𝜃 ≤ 180° 
occurs at 𝜃𝜃 = 90°. In other words, with all other parameters constant, the cannonball stays in the air longest when fired 
directly upward. 
 

 
Exercise 12.7: Confirm that the derivative of sin(x) is zero at x = 11𝜋𝜋/2. Is this a maximum or minimum value of sin(x)? 
Solution: The derivative of sin(x) is cos(x), and  

 
so the derivative of sin(x) is indeed zero at x = 11𝜋𝜋/2. Because sin(11𝜋𝜋/2) = sin(3𝜋𝜋/2) = -1 and the sine function ranges 
between -1 and 1, we can be sure this is a local maximum. Here’s a plot of sin(x) to confirm that: 

 
 

 
Exercise 12.8: Where does f(x) = x3 − x have its local maximum and minimum values? What are the values? 
Solution: You can see from plotting the function that f(x) hits a local minimum value at some x > 0 and a local 
maximum value at some x < 0. Let’s find these two points. 
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The derivative is f’(x) = 3x2 − 1, so we want to find where 3x2 − 1 = 0. We could use the quadratic formula to solve for x, 

but it’s simple enough to eyeball a solution. If 3x2 − 1 = 0 then x2 = 1/3, so x = -1/√3 or x = 1/√3. These are the x 
values where f(x) hits its local minimum and maximum values. 
The local maximum value is  

 
and the local minimum value is  

 
 

 
Mini-project 12.9: The graph of a quadratic function q(x) = ax2 + bx + c with a ≠ 0 is a parabola, an arch shape that 
either has a single maximum value or a single minimum value. Based on the numbers a, b, and c, what is the x value 
where q(x) is maximized or minimized? How can you tell if this point is a minimum or maximum? 
Solution: The derivative q’(x) is given by 2ax + b. This is zero when x =-b/2a. 
If a is positive, the derivative starts negative at some low x value, then hits zero at x = -b/2a and is positive from then 
on. That means q is decreasing before x = -b/2a and increasing thereafter; this describes a minimum value of q(x).  
You can tell the opposite story if a is negative. Therefore, x = -b/2a is a minimum value of q(x) if a is positive and a 
maximum value if a is negative. 
 

12.3 Enhancing our simulation 
As your simulator becomes more complicated, there can be multiple parameters governing its 
behavior. For our original cannon, the launch angle 𝜃𝜃 was the only parameter we were playing 
with. To optimize the range of the cannon, we worked with a function of one variable: r(𝜃𝜃). In 
this section, we’ll make our cannon fire in 3D, meaning that we need to vary two launch angles 
as parameters to optimize the range of the cannonball. 

12.3.1 Adding another dimension 

The first thing is to add a y dimension to our simulation. We can now picture the cannon sitting 
at the origin of the x,y plane, shooting the cannonball up into the z direction at some angle 𝜃𝜃. 
In this version of the simulator, you can control the angle 𝜃𝜃 as well as a second angle, which 
we’ll call 𝜙𝜙 (the Greek letter phi). This measures how far the cannon is rotated laterally from 
the +x direction (figure 12.17). 
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Figure 12.17: Picturing the cannon firing in 3D. Two angles 𝜃𝜃 and 𝜙𝜙 determine the direction the cannon is fired. 

To simulate the cannon in 3D, we need to add motion in the y direction. The physics in the z 
direction remains exactly the same, but the horizontal velocity is split between the x and y 
direction, depending on the value of the angle 𝜙𝜙. Whereas the previous x component of the 
initial velocity was vx = |v|cos(𝜃𝜃), it’s now scaled by a factor of cos(𝜙𝜙) to give vx = 

|v|cos(𝜃𝜃)cos(𝜙𝜙). The y component of initial velocity is vy = |v|cos(𝜃𝜃)sin(𝜙𝜙). Because gravity 

doesn’t act in the y direction, we don’t have to update vy over the course of the simulation. 
Here’s the updated trajectory function: 

def trajectory3d(theta,phi,speed=20, 
                 height=0,dt=0.01,g=-9.81):  #<1> 

    vx = speed * cos(pi*theta/180)*cos(pi*phi/180) 
    vy = speed * cos(pi*theta/180)*sin(pi*phi/180) #<2> 
    vz = speed * sin(pi*theta/180) 
    t,x,y,z = 0, 0, 0, height 
    ts, xs, ys, zs = [t], [x], [y], [z] #<3> 
    while z >= 0: 
        t += dt 
        vz += g * dt 
        x += vx * dt 
        y += vy * dt #<4> 
        z += vz * dt 

        ts.append(t) 
        xs.append(x) 
        ys.append(y) 
        zs.append(z) 
    return ts, xs, ys, zs 
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#1 The lateral angle 𝜙𝜙 is the input parameter of the simulation. 
#2 Calculates the initial y velocity 
#3 Stores the values of time and the x, y, and z positions throughout the simulation 
#4 Updates the y position in each iteration 

If this simulation is successful, we don’t expect it to change the angle 𝜃𝜃 that yields the maximum 
range. Whether you fire a projectile at 45° above the horizontal in the +x direction, the -x 
direction, or any other direction in the plane, the projectile should go the same distance. That 
is to say that 𝜙𝜙 doesn’t affect the distance traveled. Next, we add the terrain with a variable 
elevation around the launch point so the distance traveled changes. 

12.3.2 Modeling terrain around the cannon 

Hills and valleys around the cannon mean that its shots can stay in the air for different durations 
depending on where they’re aimed. We can model the elevation above or below the plane z = 
0 by a function that returns a number for every (x,y) point. For instance, 

def flat_ground(x,y): 
    return 0 

represents flat ground, where the elevation at every (x,y) point is zero. Another function we’ll 
use is a ridge between two valleys: 

def ridge(x,y): 
    return (x**2 - 5*y**2) / 2500 

On this ridge, the ground slopes upward from the origin in the positive and negative x directions, 
and it slopes downward in the positive and negative y directions. (You can plot the cross sections 
of this function at x = 0 and y = 0 to confirm this.)   

Whether we want to simulate the projectile on flat ground or on the ridge, we have to adapt the 
trajectory3d function to terminate when the projectile hits the ground, not just when its 
altitude is zero. To do this, we can pass the elevation function defining the terrain as a keyword 
argument, defaulting to flat ground, and revise the test for whether the projectile is above 
ground. Here are the changed lines in the function: 

def trajectory3d(theta,phi,speed=20,height=0,dt=0.01,g=-9.81, 
                    elevation=flat_ground): 

    ... 
    while z >= elevation(x,y): 
       ... 

In the source code, I also provide a function called plot_trajectories_3d, which plots the 
result of trajectory3D as well as the specified terrain. To confirm our simulation works, we see 
the trajectory end below z = 0 when the cannonball is fired downhill and above z = 0 when it is 
fired uphill (figure 12.18): 

plot_trajectories_3d( 
    trajectory3d(20,0,elevation=ridge), 
    trajectory3d(20,270,elevation=ridge), 
    bounds=[0,40,-40,0], 
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    elevation=ridge) 

 
Figure 12.18: A projectile fired downhill lands below z = 0 and a projectile fired uphill lands above z = 0. 

If you had to guess, it seems reasonable that the maximum range for the cannon is attained in 
the downhill direction rather than the uphill direction. On its way down, the cannonball has 
further to fall, taking more time and allowing it to travel further. It’s not clear if the vertical 
angle 𝜃𝜃 will yield the optimal range because our calculation of 45° made the assumption that 
the ground was flat. To answer this question, we need to write the range r of the projectile as a 
function of 𝜃𝜃 and 𝜙𝜙. 

12.3.3 Solving for the range of the projectile in 3D 

Even though the cannonball is fired in 3D space in our latest simulation, its trajectory lies in a 
vertical plane. As such, given an angle 𝜙𝜙, we only need to work with the slice of the terrain in 
the direction the cannonball is fired. For instance, if the cannonball is fired at an angle 𝜙𝜙 = 240°, 
we only need to think about terrain values when (x, y) lies along a line at 240° from the origin. 
This is like thinking about the elevation of the terrain only at the points in the shadow cast by 
the trajectory (figure 12.19). 
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Figure 12.19: We only need to think about the elevation of the terrain in the plane where the projectile is fired. 
This is where the shadow of the trajectory is cast. 

Our goal is to do all of our calculations in the plane of the shadow’s trajectory, working with the 
distance d from the origin in the x,y plane as our coordinate, rather than x and y themselves. 
At some distance, the trajectory of the cannonball and the elevation of the terrain will have the 
same z value, which is where the cannonball stops. This distance is the range that we want to 
find an expression for. 

Let’s keep calling the height of the projectile z. As a function of time, the height is exactly the 
same as in our 2D example: 

 
where vz is the z component of the initial velocity. The x and y positions are also given as simple 
functions of time x(t) = vxt and y(t) = vyt because no forces act in the x or y direction. 

On the ridge, the elevation is given as a function of the x,y position by (x2 − 5y2)/2500. We can 
write this elevation as h(x, y) = Bx2 − Cy2 where B = 1/2500 = 0.0004 and C = 5/2500 = 0.002. 
It’s useful to know the elevation of the terrain directly under the projectile at a given time t, 
which we can call h(t). We can calculate the value of h under the projectile at any point in time 
t because the projectile’s x and y positions are given by vxt and vyt, and the elevation at the 
same (x, y) point will be h(vxt, vyt) = Bvx2t2 − Cvy2t2. 

The altitude of the projectile above the ground at a time t is the difference between z(t) and 
h(t). The time of impact is the time when this difference is zero, that is z(t) − h(t) = 0. We can 
expand that condition in terms of the definitions of z(t) and h(t): 
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Once again, we can reshape this into the form at2 + bt + c = 0: 

 
Specifically, a = g/2 − Bvx2 + Cvy2, b = vz and c = 0. To find the time t that satisfies this 
equation, we can use the quadratic formula: 

 
Because c = 0, the form is even simpler: 

 
When we use the + operator, we find t = 0, confirming that the cannonball is at ground level at 
the moment it is launched. The interesting solution is obtained using the − operator, which is 
the time the projectile lands. This time is t = (-b − b)/2a = -b/a. Plugging in the expressions 
for a and b, we get an expression for landing time in terms of quantities we know how to 
calculate: 

 
The distance in the (x,y) plane that the projectile lands is �𝑥𝑥(𝑡𝑡)2 + 𝑦𝑦(𝑡𝑡)2 for this time t. That 
expands to �(𝑣𝑣𝑥𝑥𝑡𝑡)2 + (𝑣𝑣𝑦𝑦𝑡𝑡)2 = 𝑡𝑡�𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 . You can think of �𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 as the component of the initial 

velocity parallel to the x,y plane, so I’ll call this number vxy. The distance at landing is 

 
All of these numbers in the expression are either constants that I specified or are computed in 
terms of the initial speed v = |v| and the launch angles 𝜃𝜃 and 𝜙𝜙. It’s straightforward (albeit a 
bit tedious) to translate this to Python, where it becomes clear exactly how we can view the 
distance as a function of 𝜃𝜃 and 𝜙𝜙: 

B = 0.0004 #<1> 
C = 0.005 
v = 20 
g = -9.81 
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def velocity_components(v,theta,phi): #<2> 
    vx = v * cos(theta*pi/180) * cos(phi*pi/180) 
    vy = v * cos(theta*pi/180) * sin(phi*pi/180) 
    vz = v * sin(theta*pi/180) 
    return vx,vy,vz 
     
def landing_distance(theta,phi): #<3> 
    vx, vy, vz = velocity_components(v, theta, phi) 
    v_xy = sqrt(vx**2 + vy**2) #<4> 
    a = (g/2) - B * vx**2 + C * vy**2 #<5> 
    b = vz 
    landing_time = -b/a #<6> 
    landing_distance = v_xy * landing_time #<7> 
    return landing_distance 

#1 Constants for the shape of the ridge, launch speed, and acceleration due to gravity 
#2 A helper function that finds the x, y, and z components of the initial velocity 
#3 Optimizes the function as defined in section 3.1 
#4 The horizontal component of initial velocity (parallel to the x,y plane) 
#5 The constants a and b 
#6 Solves the quadratic equation for landing time, which is -b/a 
#7 The horizontal distance traveled 

The horizontal distance traveled is the horizontal velocity times the elapsed time. Plotting this 
point alongside the simulated trajectory, we can verify that our calculated value for the landing 
position matches the simulation with Euler’s method (figure 12.20). 

 
Figure 12.20: Comparing the calculated landing point with the result of the simulation for 𝜃𝜃 = 30° and 𝜙𝜙 = 
240° 

Now that we have a function r(𝜃𝜃, 𝜙𝜙) for the range of the cannon in terms of the launch angles 𝜃𝜃 
and 𝜙𝜙, we can turn our attention to finding the angles that optimize the range. 
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12.3.4 Exercises 

 
Exercise 12.10: If |v| = v is the initial speed of the cannonball, verify that the initial velocity vector has a magnitude 
equal to v. In other words, show that the vector (v cos 𝜃𝜃 cos 𝜙𝜙, v cos 𝜃𝜃 sin 𝜙𝜙, v sin 𝜃𝜃) has length v.  
Hint: By the definitions of sine and cosine and the Pythagorean theorem, sin2x + cos2x = 0 for any value of x. 
Solution: The magnitude of (v cos 𝜃𝜃 cos 𝜙𝜙, v cos 𝜃𝜃 sin 𝜙𝜙, v sin 𝜃𝜃) is given by: 

 

 

 

 

 
 

 

 
Exercise 12.11: Explicitly write out the formula for the range of the cannonball on the ridge with elevation Bx2 − Cy2 as a 
function of 𝜃𝜃 and 𝜙𝜙. The constants that appear are B and C, as well as the initial launch speed v and the acceleration 
due to gravity g. 
Solution: Starting with the formula  

 
we can plug in vz = v sin 𝜃𝜃, vxy = v cos 𝜃𝜃, vy = v cos 𝜃𝜃 sin 𝜙𝜙, and vx = v cos 𝜃𝜃 cos 𝜙𝜙 to get:  

 
With a little simplification in the denominator, this becomes 

 
 

 
Mini-project 12.12: When an object like a cannonball moves quickly through the air, it experiences frictional force from 
the air, called drag, which pushes it in the opposite direction it’s moving. The drag force depends on a lot of factors, 
including the size and shape of the cannonball and the density of the air, but for simplicity, let’s assume it works as 

follows. If v is the cannonball’s velocity vector at any point, the drag force, Fd, is 
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where 𝛼𝛼 (the Greek letter alpha) is a number giving the magnitude of drag felt by a particular object in the air. The fact 
that the drag force is proportional to the velocity means that as an object speeds up, it feels more and more drag. 
Figure out how to add a drag parameter to the cannonball simulation and show that drag causes the cannonball to slow 
down. 
Solution: We want to add to our simulation is an acceleration based on drag. The force will be -𝛼𝛼v, so the acceleration it 
causes is -𝛼𝛼v/m. Because we’re not varying the mass of the cannonball, we can use a single drag constant, which is 

𝛼𝛼/m. The components of the acceleration due to drag is vx𝛼𝛼/m, vy𝛼𝛼/m and vz𝛼𝛼/m. Here’s the updated section of the 

code: 
def trajectory3d(theta,phi,speed=20,height=0,dt=0.01,g=-9.81, 

                 elevation=flat_ground, drag=0): 

    ... 

    while z >= elevation(x,y): 

        t += dt 

        vx -= (drag * vx) * dt #<1>  

        vy -= (drag * vy) * dt 

        vz += (g - (drag * vz)) * dt #<2> 

        ... 

    return ts, xs, ys, zs 

#1 Reduces both vx and vy in proportion to the drag force 
#2 Changes the z velocity (vz) by the effects of gravity and drag 

You can see that a small drag constant of 0.1 slows down the cannonball noticeably, causing it 
to fall short of the trajectory without drag. 

 
Trajectories of the cannonball with drag = 0 and drag = 0.1 
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12.4 Optimizing range using gradient ascent 
Let’s continue to assume that we’re firing the cannon on the ridge terrain with some launch 
angles 𝜃𝜃 and 𝜙𝜙, and all other launch parameters set to their defaults. In this case, the function 
r(𝜃𝜃, 𝜙𝜙) tells us what the range of the cannon is at these launch angles. To get a qualitative sense 
of how the angles affect the range, we can plot the function r. 

12.4.1 Plotting range versus launch parameters 

I showed you a few different ways to plot a function of two variables in the last chapter. My 
preference for plotting r(𝜃𝜃, 𝜙𝜙) is to use a heatmap. On a 2D canvas, we can vary 𝜃𝜃 in one 
direction and vary 𝜙𝜙 in the other and then use color to indicate the corresponding range of the 
projectile (figure 12.21). 

 
Figure 12.21: A heatmap of the range of the cannon as a function of the launch angles 𝜃𝜃 and 𝜙𝜙 

This 2D space is an abstract one, having coordinates 𝜃𝜃 and 𝜙𝜙. That is to say that this rectangle 
isn’t a drawing of a 2D slice of the 3D world we’ve modelled. Rather, it’s just a convenient way 
to show how the range r varies as the two parameters change. 

On the graph in figure 12.22, brighter values indicate higher ranges, and there appear to be two 
brightest points. These are possible maximum values of the range of the cannon. 
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Figure 12.22: The brightest spots occur when the range of the projectile is maximized. 

These spots occur at around 𝜃𝜃 = 40, 𝜙𝜙 = 90, and 𝜙𝜙 = 270. The 𝜙𝜙 values make sense because 
they are the downhill directions in the ridge. Our next goal is to find the exact values of 𝜃𝜃 and 
𝜙𝜙 to maximize the range. 

12.4.2 The gradient of the range function 

Just as we used the derivative of a function of one variable to find its maximum, we’ll use the 
gradient ▽r(𝜃𝜃, 𝜙𝜙) of the function r(𝜃𝜃, 𝜙𝜙) to find its maximum values. For a smooth function of 
one variable, f(x), we saw that f’(x) = 0 when f attained its maximum value. This is when the 
graph of f(x) was momentarily flat, meaning the slope of f(x) was zero, or more precisely, that 
the slope of the line of best approximation at the given point was zero. Similarly, if we make a 
3D plot of r(𝜃𝜃, 𝜙𝜙), we can see that it is flat at its maximum points (figure 12.23). 
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Figure 12.23: The graph of r(𝜃𝜃, 𝜙𝜙) is flat at its maximum points. 

Let’s be precise about what this means. Because r(𝜃𝜃, 𝜙𝜙) is smooth, there is a plane of best 
approximation. The slopes of this plane in the 𝜃𝜃 and 𝜙𝜙 directions are given by the partial 
derivatives ∂r/∂𝜃𝜃 and ∂r/∂𝜙𝜙, respectively. Only when both of these are zero is the plane flat, 
meaning the graph of r(𝜃𝜃, 𝜙𝜙) is flat. 

Because the partial derivatives of r are defined to be the components of the gradient of r, this 
condition of flatness is equivalent to saying that ▽r(𝜃𝜃, 𝜙𝜙) = 0. To find such points, we have to 
take the gradient of the full formula for r(𝜃𝜃, 𝜙𝜙) and then solve for values of 𝜃𝜃 and 𝜙𝜙 that cause 
it to be zero. Taking these derivatives and solving them is a lot of work and not that enlightening, 
so I’ll leave it as an exercise for you. Next, I’ll show you a way to follow an approximate gradient 
up the slope of the graph toward the maximum point, which won’t require any algebra. 

Before I move on, I want to reiterate a point from the previous section. Just because you’ve 
found a point on the graph where the gradient is zero doesn’t mean that it’s a maximum value. 
For instance, on the graph of r(𝜃𝜃, 𝜙𝜙), there’s a point in between the two maxima where the 
graph is flat and the gradient is zero (figure 12.24). 
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Figure 12.24: A point (𝜃𝜃, 𝜙𝜙) where the graph of r(𝜃𝜃, 𝜙𝜙) is flat. The gradient is zero, but the function does not 
attain a maximum value.  

This point isn’t meaningless, it happens to tell you the best angle 𝜃𝜃 when you’re shooting the 
projectile at 𝜙𝜙 = 180°, which is the worst possible direction because it is the steepest uphill 
direction. A point like this is called a saddle point, where the function simultaneously hits a 
maximum with respect to one variable and a minimum with respect to another. The name comes 
from the fact that the graph kind of looks like a saddle.  

Again, I won’t go into the details of how to identify maxima, minima, saddle points, or other 
kinds of places where the gradient is zero, but be warned: with more dimensions, there are 
weirder ways that a graph can be flat. 

12.4.3 Finding the uphill direction with the gradient 
Rather than take the partial derivatives of the complicated function r(𝜃𝜃, 𝜙𝜙) symbolically, we can 
find approximate values for the partial derivatives. The direction of the gradient that they give 
us tells us, for any given point, which direction the function increases the most quickly. If we 
jump to a new point in this direction, we should move uphill and towards a maximum value. 
This procedure is called gradient ascent, and we’ll implement it in Python. 

The first step is to be able to approximate the gradient at any point. To do that, we use the 
approach I introduced in chapter 9: taking the slopes of small secant lines. Here are the functions 
as a reminder: 

def secant_slope(f,xmin,xmax): #<1> 
    return (f(xmax) - f(xmin)) / (xmax - xmin) 
 
def approx_derivative(f,x,dx=1e-6): #<2> 
    return secant_slope(f,x-dx,x+dx) 
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#1 Finds the slope of a secant line, f(x), between x values of xmin and xmax 
#2 The approximate derivative is a secant line between x − 10-6 and x + 10-6. 

To find the approximate partial derivative of a function f(x, y) at a point (x0, y0), we want to 
fix x = x0 and take the derivative with respect to y, or fix y = y0 and take the derivative with 
respect to x. In other words, the partial derivative ∂f/∂x at (x0, y0) is the ordinary derivative of 
f(x, y0) with respect to x at x = x0. Likewise, the partial derivative ∂f/∂y is the ordinary 
derivative of f(x0, y) with respect to y at y = y0. The gradient is a vector (tuple) of these partial 
derivatives: 

def approx_gradient(f,x0,y0,dx=1e-6): 
    partial_x = approx_derivative(lambda x: f(x,y0), x0, dx=dx) 
    partial_y = approx_derivative(lambda y: f(x0,y), y0, dx=dx) 
    return (partial_x,partial_y) 

In Python, the function r(𝜃𝜃, 𝜙𝜙) is encoded as the landing_distance function, and we can store 
a special function, approx_gradient, representing its gradient: 

def landing_distance_gradient(theta,phi): 
    return approx_gradient(landing_distance_gradient, theta, phi) 

This, like all gradients, defines a vector field: an assignment of a vector to every point in space. 
In this case, it tells us the vector of steepest increase in r at any point (𝜃𝜃, 𝜙𝜙). Figure 12.25 
shows the plot of the landing_distance_gradient on top of the heatmap for r(𝜃𝜃, 𝜙𝜙). 

 
Figure 12.25: A plot of the gradient vector field ▽r(𝜃𝜃, 𝜙𝜙) on top of the heatmap of the function r(𝜃𝜃, 𝜙𝜙). The 
arrows point in the direction of increase in r, toward brighter spots on the heatmap. 
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It’s even clearer that the gradient arrows converge on maximum points for the function if you 
zoom in (figure 12.26). 

 
Figure 12.26: The same plot as in figure 12.25 near (𝜃𝜃, 𝜙𝜙) = (37.5°, 90°), which is the approximate location of 
one of the maxima 

The next step is to implement the gradient ascent algorithm, where we start at an arbitrarily 
chosen point (𝜃𝜃, 𝜙𝜙) and follow the gradient field until we arrive at a maximum. 

12.4.4 Implementing gradient ascent 

The gradient ascent algorithm takes as inputs the function we’re trying to maximize, as well as 
a starting point where we’ll begin our exploration. Our simple implementation calculates the 
gradient at the starting point and adds it to the starting point, giving us a new point some 
distance away from the original in the direction of the gradient. Repeating this process, we can 
move to points closer and closer to a maximum value. 

Eventually, as we approach a maximum, the gradient will get close to zero as the graph reaches 
a plateau. When the gradient is near zero, we have nowhere further uphill to go, and the 
algorithm should terminate. To make this happen, we can pass in a tolerance, which is the 
smallest value of the gradient that we should follow. If the gradient is smaller, we can be assured 
the graph is flat, and we’ve arrived at a maximum for the function. Here’s the implementation: 

def gradient_ascent(f,xstart,ystart,tolerance=1e-6): 
    x = xstart #<1> 
    y = ystart 
    grad = approx_gradient(f,x,y) #<2> 
    while length(grad) > tolerance: #<3> 
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        x += grad[0] #<4> 
        y += grad[1] 
        grad = approx_gradient(f,x,y) #<5> 
    return x,y #<6> 

#1 Sets the initial values of (x, y) to the input values 
#2 Tells us how to move uphill from the current (x, y) value 
#3 Only steps to a new point if the gradient is longer than the minimum length 
#4 Updates (x, y) to (x, y) + ▽f(x, y) 
#5 Updates the gradient at this new point 
#6 When there’s nowhere further uphill to go, returns the values of x and y 

Let’s test this, starting at the value of (𝜃𝜃, 𝜙𝜙) = (36°, 83°), which appears to be fairly close to 
the maximum: 

>>> gradient_ascent(landing_distance,36,83) 
(37.58114751557887, 89.99992616039857) 

This is a promising result! On our heatmap in figure 12.27, we can see the movement from the 
initial point of (𝜃𝜃, 𝜙𝜙) = (36°, 83°) to a new location of roughly (𝜃𝜃, 𝜙𝜙) = (37.58, 90.00), which 
looks like it has the maximum brightness. 

 
Figure 12.27: The starting and ending points for the gradient ascent 

To get a better sense of how the algorithm works, we can track the trajectory of the gradient 
ascent through the 𝜃𝜃, 𝜙𝜙 plane. This is similar to how we tracked the time and position values as 
we iterated through Euler’s method: 

def gradient_ascent_points(f,xstart,ystart,tolerance=1e-6): 
    x = xstart 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

    y = ystart 
    xs, ys = [x], [y] 
    grad = approx_gradient(f,x,y) 
    while length(grad) > tolerance: 
        x += grad[0] 
        y += grad[1] 
        grad = approx_gradient(f,x,y) 
        xs.append(x) 
        ys.append(y) 
    return xs, ys 

With this implemented, we can run  

gradient_ascent_points(landing_distance,36,83) 

and we get back two lists, consisting of the 𝜃𝜃 values and the 𝜙𝜙 values at each step of the ascent. 
These lists both have 855 numbers, meaning that this gradient ascent took 855 steps to 
complete. When we plot the 𝜃𝜃 and 𝜙𝜙 points on the heatmap (figure 12.28), we can see the path 
that our algorithm took to ascend the graph. 

 
Figure 12.28: The path that the gradient ascent algorithm takes to reach the maximum value of the range 
function 

Note that because there are two maximum values, the path and the destination depend on our 
choice of the initial point. If we start close to 𝜙𝜙 = 90°, we’re likely to hit that maximum, but if 
we’re closer to 𝜙𝜙 = 270°, our algorithm finds that one instead (figure 12.29). 
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Figure 12.29: Starting at different points, the gradient ascent algorithm can find different maximum values. 

The launch angles (37.58°, 90°) and (37.58°, 270°) both maximize the function r(𝜃𝜃, 𝜙𝜙) and are, 
therefore, the launch angles that yield the greatest range for the cannon. That range is about 
53 meters 

>>> landing_distance(37.58114751557887, 89.99992616039857) 
52.98310689354378 

and we can plot the associated trajectories as shown in figure 12.30. 

 
Figure 12.30: The trajectories for the cannon having maximum range. 
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As we explore some machine learning applications, we’ll continue to rely on the gradient to 
figure out how to optimize functions. Specifically, we’ll use the counterpart to gradient ascent, 
called gradient descent. This finds the minimum values for functions by exploring the parameter 
space in the direction opposite the gradient, thereby moving downhill instead of uphill. Because 
gradient ascent and descent can be performed automatically, we’ll see they give a way for 
machines to learn optimal solutions to problems on their own. 

12.4.5 Exercises 

 
Exercise 12.13: On the heatmap, simultaneously plot the paths of gradient ascent from 20 randomly chosen points. All 
of the paths should end up at one of the two maxima. 
Solution: With a heatmap already plotted, we can run the following to execute and plot 20 random gradient ascents: 
from random import uniform 

for x in range(0,20): 

    gap = gradient_ascent_points(landing_distance,  

                                 uniform(0,90),  

                                 uniform(0,360)) 

    plt.plot(*gap,c='k') 

The result shows that all of the paths lead to the same places. 

 
The paths of gradient ascents from 20 random initial points 
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Mini-project 12.14: Find the partial derivatives ∂r/∂𝜃𝜃 and ∂r/∂𝜙𝜙 symbolically and write a formula for the gradient ▽r(𝜃𝜃, 
𝜙𝜙). 
 

 
Exercise 12.15: Find the point on r(𝜃𝜃, 𝜙𝜙) where the gradient is zero, but the function is not maximized. 
Solution: We can trick the gradient ascent by starting it with 𝜙𝜙 = 180°. By the symmetry of the setup, we can see that 
∂r/∂𝜙𝜙 = 0 wherever 𝜙𝜙 = 180°, so the gradient ascent never has a reason to leave the line where 𝜙𝜙 = 0: 
>>> gradient_ascent(landing_distance,0,180) 

(46.122613357930206, 180.0) 

This is the optimal launch angle if you fix 𝜙𝜙 = 0 or 𝜙𝜙 = 180°, which is the worst angle because you’re firing uphill. 

 
Tricking gradient ascent by initializing it on a cross section where ∂r/∂𝜙𝜙 = 0 
 

 
Exercise 12.16: How many steps does it take for gradient ascent to reach the origin from (36, 83)? Instead of jumping 
one gradient, jump 1.5 gradients. Show that you get there in fewer steps. What happens if you jump even further in 
each step? 
Solution: Let’s introduce a parameter rate to the gradient ascent calculation, which indicates how fast the ascent tries 
to go. The higher the rate, the more we trust the current calculated gradient and jump in that direction: 
def gradient_ascent_points(f,xstart,ystart,rate=1,tolerance=1e-6): 

    ... 

    while length(grad) > tolerance: 

        x += rate * grad[0] 
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        y += rate * grad[1] 

        ... 

    return xs, ys 
Here’s a function that counts the number of steps that a gradient ascent process takes to converge: 
def count_ascent_steps(f,x,y,rate=1): 

    gap = gradient_ascent_points(f,x,y,rate=rate) 

    print(gap[0][-1],gap[1][-1]) 

    return len(gap[0]) 

It takes 855 steps to perform our original ascent, with the rate parameter equal to 1: 

>>> count_ascent_steps(landing_distance,36,83) 

855 

With rate=1.5, we jump one and a half gradients in each step. Not surprisingly, we get to the maximum faster, in only 
568 steps: 
>>> count_ascent_steps(landing_distance,36,83,rate=1.5) 

568 
Trying some more values, we see that increasing the rate gets us to the solution in even fewer steps: 
>>> count_ascent_steps(landing_distance,36,83,rate=3) 

282 

>>> count_ascent_steps(landing_distance,36,83,rate=10) 

81 

>>> count_ascent_steps(landing_distance,36,83,rate=20) 

38 
Don’t get too greedy though! When we use a rate of 20, we get the answer in fewer steps, but some steps appear to 
overshoot the answer and the next step doubles back. If you set the rate too high, the algorithm can get further and 
further from the solution; in which case, it is said to diverge rather than converge. 

 
A gradient ascent with a rate of 20. The algorithm initially overshoots the maximum 𝜃𝜃 value and has to double back. 
If you up the rate to 40, your gradient ascent won’t converge. Each jump overshoots further than the last, and the 
exploration of the parameter space runs off into infinity. 
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Exercise 12.17: What happens when you try to run gradient_ascent directly using simulated results for r as a 
function of 𝜃𝜃 and 𝜙𝜙 instead of calculated results? 
Solution: The result is not pretty. This is because the simulated results depend on numerical estimations (like deciding 
when the projectile hits the ground), so these fluctuate rapidly for small changes in the launch angles. Here’s a plot of 
the cross section r(𝜃𝜃, 270°) that our derivative approximator would consider when calculating the partial derivative 
∂r/∂𝜃𝜃: 

 
A cross section of simulated trajectories shows that our simulator doesn’t produce a smooth function r(𝜃𝜃, 𝜙𝜙).  
The value of the derivative fluctuates wildly, so the gradient ascent moves in random directions. 
 

12.5 Summary 
• We can simulate a moving object’s trajectory by using Euler’s method and recording all 

of the times and positions along the way. We can compute facts about the trajectory, 
like final position or elapsed time. 

• Varying a parameter of our simulation, like the launch angle of the cannon, can lead to 
different results; for instance, a different range for the cannonball. If we want to find the 
angle that maximizes range, it helps to write range as a function of the angle r(𝜃𝜃). 

• Maximum values of a smooth function f(x) occur where the derivative f’(x) is zero. You 
need to be careful, though, because when f’(x) = 0, the function f might be at a maximum 
value, or it could also be a minimum value or a point where function f has temporarily 
stopped changing. 

• To optimize a function of two variables, like the range r as a function of the vertical 
launch angle 𝜃𝜃 and the lateral launch angle 𝜙𝜙, you need to explore the 2D space of all 
possible inputs (𝜃𝜃, 𝜙𝜙) and figure out which pair produces the optimal value. 

• Maximum and minimum values of a smooth function of two variables f(x, y) occur when 
both partial derivatives are zero; that is, ∂f/∂x = 0 and ∂f/∂y = 0, so ▽f(x, y) = 0 as well 
(by definition). If the partial derivatives are zero, it might also be a saddle point, which 
minimizes the function with respect to one variable while maximizing it with respect to 
the other. 
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• The gradient ascent algorithm finds an approximate maximum value for a function f(x,y) 
by starting at an arbitrarily chosen point in 2D and moving in the direction of the gradient 
▽f(x, y). Because the gradient points in the direction of most rapid increase in the 
function f, this algorithm finds (x, y) points with increasing f values. The algorithm 
terminates when the gradient is near zero. 
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Analyzing sound waves with a 

Fourier series 

This chapter covers 

• Defining and playing sound waves with Python and PyGame 
• Turning sinusoidal functions into playable musical notes 
• Combining two sounds by adding their sound waves as functions 
• Decomposing a sound wave function into its Fourier series to see its musical notes 

For a lot of part 2, we’ve focused on using calculus to simulate moving objects. In this chapter, 
I’ll show you a completely different application: working with audio data. Digital audio data is a 
computer representation of sound waves, which are repeating changes of pressure in the air 
that our ears perceive as sound. We’ll think of sound waves as functions that we can add and 
scale as vectors, and then we can use integrals to understand what kinds of sounds they 
represent. As a result, our exploration of sound waves combines a lot of what you’ve learned 
about both linear algebra and calculus in earlier chapters. 

I won’t go too deep into the physics of sound waves, but it’s useful to understand how they work 
at a basic level. What we perceive as sound isn’t air pressure itself, but rather rapid changes in 
air pressure that cause our eardrums to vibrate. For instance, if you play a violin, you drag the 
bow across one of the strings and cause the string to vibrate. The vibrating string causes the 
air around it to rapidly change pressure, and the changes in pressure propagate through the air 
as sound waves until they reach your ear. At that point, your eardrum vibrates at the same rate, 
and you perceive a sound (figure 13.1). 
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Figure 13.1: Schematic diagram of the sound of a violin reaching an eardrum 

You can think of a digital audio file as a function describing a vibration over time. Audio software 
interprets the function and instructs your speakers to vibrate accordingly, producing sound 
waves of a similar shape in the air around the speakers. For our purposes, it doesn’t matter 
exactly what the function represents, but you can interpret it loosely as describing air pressure 
over time (figure 13.2). 

 
Figure 13.2: Thinking of sound waves as functions, loosely interpreted as representing pressure over time 

Interesting sounds like musical notes have sound waves with repeating patterns, like the one 
shown in figure 13.2. The rate at which the function repeats itself is called the frequency and 
tells how high or low the musical note sounds. The quality, or timbre, of the sound is controlled 
by the shape of the repeating pattern; for instance, whether it sounds more like a violin, a 
trumpet, or a human voice.  
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13.0.1 Combining sound waves and decomposing them 

Throughout this chapter, we do mathematical operations on functions and use Python to play 
them as actual sounds. The two main things we’ll do are combining existing sound waves to 
make new ones and then decomposing complex sound waves into simpler ones. For instance, 
we can combine several musical notes into a chord and then we can decompose a chord to see 
its musical notes. 

Before we do that, however, we need to cover the basic building blocks: sound waves and 
musical notes. I start by showing you how to use Python to turn a sequence of numbers, 
representing a sound wave, into a real sound coming out of your speakers. To make a sound 
corresponding to a function, we extract some y values from the graph of the function and pass 
these to the audio library as an array. This is a process called sampling (figure 13.3). 

Figure 13.3: Starting with the graph of a function f(t) (left) and sampling some of the y values (right) to send to 
an audio library 

The main sound wave functions we’ll use are periodic functions, whose graphs are built from the 
same repeating shape. Specifically, we’ll use sinusoidal functions, a family of periodic functions 
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including sine and cosine that produce natural-sounding musical notes. After sampling them to 
turn them into sequences of numbers, we’ll build Python functions to play musical notes. 

Once we can produce individual notes, we’ll write Python code to help us combine different notes 
to create chords and other complex sounds. We’ll do this by adding the functions defining each 
of the sound waves together. We’ll see that combining a few musical notes can make a chord, 
and combining dozens of musical notes together can produce some quite interesting and 
qualitatively dissimilar sounds. 

Our last goal will be to decompose a function representing any sound wave into a sum of (pure) 
musical notes and their corresponding volumes, which make up the sound wave (figure 13.4). 
Such a decomposition into a sum is called a Fourier series (pronounced FOR-ee-yay). Once 
we’ve found the sound waves making up a Fourier series, we can play them together and get 
the original sound.  

Figure 13.4: Decomposing a sound wave function into a combination of simpler ones using a Fourier series 

Mathematically, finding a Fourier series means writing a function as a sum or, more specifically, 
a linear combination of sine and cosine functions. This procedure and its variants are among the 
most important algorithms of all time. Methods similar to the ones we’ll cover are used in 
common applications like MP3 compression, as well as in more grandiose ones like the recent 
Nobel prize-winning detection of gravitational waves. 

It’s one thing to look at these sound waves as graphs, but it’s another to actually hear them 
coming out of your speakers. Let’s make some noise! 

13.1 Playing sound waves in Python 
To play sounds in Python, we turn to the PyGame library that we used in a few of the preceding 
chapters. A particular function in this library takes an array of numbers as input and plays a 
sound as a result. As a first step, we use a random sequence of numbers in Python and write 
code to interpret and play these sounds with PyGame. This will just be noise (yes, that’s a 
technical term!) rather than beautiful music at this point, but we need to start somewhere. 
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After producing some noise, we’ll make a slightly more appealing sound by running the same 
process on a sequence of numbers that have repeating patterns, rather than just being 
completely random. This sets us up for the next section, where we’ll get a sequence of repeating 
numbers by sampling a periodic function. 

13.1.1 Producing our first sound 

Before we pass PyGame an array of numbers representing a sound, we need to tell it how the 
numbers should be interpreted. There are several technical details about audio data here, and 
I’ll explain them so you know how PyGame thinks about that, but these details won’t be critical 
to the rest of the chapter. 

In this application, we use conventions typically used in CD audio. Specifically, we’ll represent 
one second of audio with an array of 44,100 values, each of which is a 16-bit integer (between 
-32,768 and 32,767). These numbers roughly represent the intensity of the sound at every step 
of time, with 44,100 steps in a second. This is not unlike how we represented an image in 
chapter 6. Instead of an array of values giving the brightness of pixels, we have an array of 
values giving the intensity of a sound wave at different moments in time. Eventually, we’ll get 
these numbers as the y-coordinates of points on a sound wave graph, but for now, we’re going 
to pick them randomly to make some noise. 

We also use a single channel, meaning we only play one sound wave as opposed to stereo audio, 
which produces two sound waves simultaneously, one in the left speaker and one in the right. 
The other thing we configure is the bit depth of the sound. While frequency is analogous to the 
resolution of an image, bit depth is like the number of allowable pixel colors, more bit depth 
means a more refined range of sound intensities. We used three numbers between 0 and 256 
for the color of a pixel, but here, we use a single 16-bit number to represent the sound intensity 
at a moment in time. With these parameters selected, the first step in our code is to import 
PyGame and initialize the sound library: 

>>> import pygame, pygame.sndarray 
>>> pygame.mixer.init(frequency=44100,  

                      size=-16, #<1> 
                      channels=1)  
 

#1 -16 indicates a bit depth of 16 and an input of 16-bit signed integers ranging from -32,768 to 32,767 

To start with the simplest possible example, we can generate one second of audio by creating a 
NumPy array of 44,100 random integers between -32,768 and 32,767. We can do this in one 
line with NumPy’s randint function: 

>>> import numpy as np 
>>> arr = np.random.randint(-32768, 32767, size=44100) 
>>> arr 
array([-16280, 30700, -12229, ..., 2134, 11403, 13338]) 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

To interpret this array as a sound wave, we can plot its first few values on a scatter graph. I’ve 
included a plot_sequence function in the source code for this book to help you quickly plot an 
array of integer values like this. If you run plot_sequence(arr,max=100), you get a picture of 
the first 100 values of this array. As compared to numbers sampled from a smooth function, 
these numbers are all over the place (figure 13.5). 

 
Figure 13.5: Sampled values from a sound wave (left) vs. our random values (right) 

If you connect the dots, you can picture them as defining a function over this time period. Figure 
13.6 shows two graphs of the array of numbers with the dots connected, showing the first 100 
and 441 numbers, respectively. This data is completely random, so there’s nothing particularly 
interesting to see, but this will be the first sound wave we play. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 13.6: The first 100 values (left) and the first 441 values (right) connected to define a function. 

Because 44,100 values define the whole second of sound, the 441 values on the right define the 
sound during the first one-hundredth of a second. Next, we can play the sound using a library 
call. 

CAUTION: Before you run the next few lines of Python code, make sure your speaker volume isn’t too high. 

The first sound we’ve made won’t be that pleasant, not to mention, you don’t want to hurt your ears! 

To play the sound, you can run: 

sound = pygame.sndarray.make_sound(arr) 
sound.play() 

The result should sound like one second of static, as if you turned on the radio without tuning it 
to a station. A sound wave like this, consisting of random values over time, is called white noise. 

About the only thing you can adjust about white noise is the volume. The human ear responds 
to changes in pressure, and the bigger the sound wave, the bigger the changes in pressure, and 
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the louder the perceived sound. If this white noise was unpleasantly loud for you, you can create 
a quieter version by generating sound data consisting of smaller numbers. For instance, this 
white noise is generated by numbers ranging from -10,000 to 10,000: 

arr = np.random.randint(-10000, 10000, size=44100) 
sound = pygame.sndarray.make_sound(arr) 
sound.play() 

This sound should be nearly identical to the first white noise you played, except that it is quieter. 
The loudness of a sound wave depends on how big the function values are, and the measure of 
this is called the amplitude of the wave. In this case, because the values vary 10,000 units from 
the average value of 0, the amplitude is said to be 10,000. 

Although some people find white noise soothing, it’s not very interesting. Let’s produce a more 
interesting sound, namely a musical note. 

13.1.2 Playing a musical note 

When we hear a musical note, our ears are detecting a pattern in the vibrations in contrast to 
the randomness of white noise. We can put together a series of 44,100 numbers with an obvious 
pattern, and you’ll hear them produce a musical note. Specifically, let’s start by repeating the 
number 10,000 fifty times and then repeating the number -10,000 fifty times. I picked 10,000 
because we just saw it’s a big enough amplitude to make the sound wave audible. Figure 13.7 
shows the plot for the first 100 numbers returned from the following code snippet: 

form = np.repeat([10000,-10000],50) #<1> 
plot_sequence(form) 

#1 Repeats each value in the list the specified number of times  

 
Figure 13.7: A plot of the sequence consisting of 10,000 numbers repeated 50 times followed by -10,000 
numbers repeated 50 times. 

If we repeat this sequence of 100 numbers 441 times, we have 44,100 total values that define 
one second of audio. To achieve this, we can use another handy NumPy function, called tile, 
which repeats a given array a specified number of times: 
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arr = np.tile(form,441) 

Figure 13.8 shows the plot of the first 1,000 values of the array with the “dots” connected. You 
can see that it jumps back and forth between 10,000 and -10,000 every 50 numbers. That 
means the pattern repeats every 100 numbers. 

 
Figure 13.8: A plot of the first 1,000 of 44,100 numbers shows the repeating pattern. 

This waveform is called a square wave because its graph has sharp, 90° corners. (Note that the 
vertical lines are only there because MatPlotLib connects all of the dots; there are no values 
between 10,000 and -10,000, just a dot at 10,000 connected to a dot at -10,000.) 

The 44,100 numbers represent one second, so the 1,000 numbers graphed in figure 13.8 
represent 1/44.1 seconds (or 0.023 seconds) of audio. Playing this sound data using the 
following lines produces a clear musical note. This is approximately the note A (or A4 in scientific 
pitch notation). You can listen to it with the same play() method as used in section 13.1.1: 

sound = pygame.sndarray.make_sound(arr) 
sound.play() 

The rate of repetition (in this case, 441 repetitions per second) is called the frequency of the 
sound wave, and it determines the pitch of the note, or how high or low the note sounds. 
Frequencies of repetition are measured in units of hertz, abbreviated Hz, where 441 Hz means 
the same thing as 441 per second. The most common definition for the pitch A is 440 Hz, but 
441 is close enough, and it conveniently divides the CD sampling rate of 44,100 values per 
second. 

Interesting sound waves come from periodic functions, which repeat themselves on fixed 
intervals like the square wave in figure 13.8. The repeated sequence for the square wave 
consists of 100 numbers, and we repeat it 441 times to get 44,100 numbers giving one second 
of audio. That’s a repetition rate of 441 Hz or once every 0.0023 seconds. What our ear detects 
as a musical note is this rate of repetition. In the next section, we’ll play sounds corresponding 
to the most important periodic functions, sine and cosine, at different frequencies. 
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13.1.3 Exercises 

 
Exercise 13.1: Our musical note A was a pattern that repeated 441 times in one second. Create a similar pattern that 
repeats 350 times in one second, which produces the musical note F. 
Solution: Fortunately, the frequency of 44,100 Hz is divisible by 350: 44,100 / 350 = 126. With 63 values of 10,000 
and 63 values of -10,000, we can repeat that sequence 350 times to create one second of audio. The resulting note 
sounds lower than the A and is indeed an F: 
form = np.repeat([10000,-10000],63) 

arr = np.tile(form,350) 

sound = pygame.sndarray.make_sound(arr) 

sound.play() 

 

13.2 Turning a sinusoidal wave into a sound 
The sound we played with the square wave was a recognizable musical note, but it wasn’t very 
natural sounding. That’s because in nature, things don’t usually vibrate in square waves. More 
often, vibrations are sinusoidal, meaning if we measure and graph these, we get results that 
look like the graphs of the sine or cosine functions. These functions turn out to be mathematically 
natural as well, so we can use them as the building blocks for the music we’re going to make. 
After sampling the notes and passing them to PyGame, you’ll be able to hear the difference 
between a square wave and a sinusoidal wave. 

13.2.1 Making audio from sinusoidal functions 

The sinusoidal functions sine and cosine, which we’ve used several times already in this book, 
are intrinsically periodic functions. That’s because their inputs are interpreted as angles; if you 
rotate 360° or 2𝜋𝜋 radians, you’re back where you started, and the sine and cosine functions 
return the same values. Therefore, sin(t) and cos(t) repeat themselves every 2𝜋𝜋 units as shown 
in figure 13.9. 

 
Figure 13.9: Every 2𝜋𝜋 units, the function sin(t) repeats the same value. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

This interval of repetition is called the period of the periodic function, so for both sine and cosine, 
the period is 2𝜋𝜋. When you graph them (figure 13.10), you can see that they look the same 
between 0 and 2𝜋𝜋 as they do between 2𝜋𝜋 and 4𝜋𝜋, or between 4𝜋𝜋 and 6𝜋𝜋, and so on. 

 
Figure 13.10: Because the sine function is periodic with period 2𝜋𝜋, its graph has the same shape over every 2𝜋𝜋 
interval. 

The only difference for the cosine function is that the graph is shifted by 𝜋𝜋/2 units to the left, 
but it still repeats itself every 2𝜋𝜋 units (figure 13.11). 

 
Figure 13.11: The graph of the cosine function has the same shape as the graph of the sine function, but it is 
shifted to the left. It also repeats itself every 2𝜋𝜋 units. 
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For the purposes of audio, one repetition every 2𝜋𝜋 seconds is a frequency of 1/(2𝜋𝜋) or about 
0.159 Hz, which turns out to be too small to be audible by the human ear. The amplitude of 1.0 
also turns out to be too small to hear in 16-bit audio. To solve this, let’s write a Python function, 
make_sinusoid(frequency,amplitude), which produces a sine function that is stretched or 
compressed vertically and horizontally to have a more desirable frequency and amplitude. A 
frequency of 441 Hz and an amplitude of 10,000 should represent an audible sound wave. 

Once we’ve produced that function, we want to extract 44,100 evenly spaced values of the 
function to pass to PyGame. The process of extracting function values like this is called sampling, 
so we can write a function called sample(f,start,end,count) that gets the specified count 
number of values of f(t) in the range of t values between start and end. Once we have our 
desired sinusoid function, we can run sample(sinusoid,0,1,44100) to get an array of 44,100 
samples to pass to PyGame, and we’ll hear what a sinusoidal wave sounds like. 

13.2.2 Changing the frequency of a sinusoid 

As a first example, let’s create a sinusoid with a frequency of 2, meaning a function shaped like 
a sine graph but repeating itself twice between zero and one. The period of the sine function is 
2𝜋𝜋, so by default, it takes 4𝜋𝜋 units to repeat itself twice (figure 13.12). 

 
Figure 13.12: The sine function repeats itself twice between t = 0 and t = 4𝜋𝜋. 

To get two periods of the sine function graph, we need the sine function to receive values from 
0 to 4𝜋𝜋 as inputs, but we want the input variable t to vary from 0 to 1. To achieve that, we can 
use the function sin(4𝜋𝜋t). From t = 0 to t = 1, all of the values between 0 and 4𝜋𝜋 are passed to 
the sine function. The plot of sin(4𝜋𝜋t) in figure 13.13 has the same graph as figure 13.12 but 
with two full periods of the sine function squished into the first 1.0 units. 
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Figure 13.13: The graph of sin(4𝜋𝜋t) is sinusoidal, repeating itself twice in every unit of t for a frequency of 2. 

The period of the function sin(4𝜋𝜋t) is ½ instead of 2𝜋𝜋, so the “squishing factor” is 4𝜋𝜋. That is, 
the original period was 2𝜋𝜋, and the reduced period is 4𝜋𝜋 times shorter. In general, for any 
constant k, a function of the form f(t) = sin(kt) has a period shrunk by a factor of k to 2𝜋𝜋/k. The 
frequency is increased by a factor of k from the usual value of 1/(2𝜋𝜋) to k/2𝜋𝜋. 

If we want a sinusoidal function with a frequency of 441, the appropriate value of k would be 
441 ⋅ 2 ⋅ 𝜋𝜋. That gives us a frequency of 

 
Increasing the amplitude of the sinusoid is simpler by comparison. All you need to do is multiply 
the sine function by a constant factor, and the amplitude increases by the same factor. With 
that, we have what we need to define our make_sinusoid function: 

def make_sinusoid(frequency,amplitude): 
    def f(t): #<1> 
        return amplitude * sin(2*pi*frequency*t) #<2> 
    return f 

#1 Defines f(t)—the sinusoidal function that is returned 
#2 Multiplies the input t by 2 ⋅ 𝜋𝜋 times the frequency, then multiplies the output of the sine function by the amplitude 

We can test this, for example, by making a sinusoidal function with a frequency of 5 and an 
amplitude of 4, and plotting it (figure 13.14) from t = 0 to t = 1: 

>>> plot_function(make_sinusoid(5,4),0,1) 
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Figure 13.14: The graph of make_sinusoid(5,4) has a height (amplitude) of 4 and repeats itself 5 times 
from t = 0 to t = 5, so it has a frequency of 5. 

Next, we work with the sound wave function that is the result of make_sinusoid(441,8000) 
having a frequency of 441 Hz and an amplitude of 8,000.  

13.2.3 Sampling and playing the sound wave 

To play the sound wave mentioned in the last section, we need to sample it to get the array of 
numbers that are playable by PyGame. Let’s set 

sinusoid = make_sinusoid(441,8000) 

so the sinusoid function from t = 0 to t = 1 represents 1 second of a sound wave we try to 
play. We pick 44,100 values of t, evenly spaced between 0 and 1, and the resulting function 
values are the corresponding values of sinusoid(t). 

We can use the NumPy function np.arange, which provides evenly spaced numbers on a given 
interval. For instance, np.arange(0,1,0.1) gives 10 evenly spaced values, starting from 0 and 
below 1 at 0.1 unit intervals: 

>>> np.arange(0,1,0.1) 
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) 

For our application, we want to use 44,100 time values between 0 and 1, which are evenly 
spaced by 1/44100 units: 

>>> np.arange(0,1,1/44100) 
array([0.00000000e+00, 2.26757370e-05, 4.53514739e-05, ..., 
       9.99931973e-01, 9.99954649e-01, 9.99977324e-01]) 

We want to apply the sinusoid function to every entry of this array to produce another NumPy 
array as a result. The NumPy function np.vectorize(f) takes a Python function f and produces 
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a new one that applies the same operation to every entry of an array. So for us, 
np.vectorize(sinusoid)(arr) applies the sinusoid function to every entry of an array. 

This is almost a complete procedure for sampling a function. The last detail we need to include 
is converting the outputs to 16-bit integer values using the astype method on NumPy arrays. 
Putting these steps together, we can build the following general sampling function: 

def sample(f,start,end,count): #<1> 
    mapf = np.vectorize(f) #<2> 
    ts = np.arange(start,end,(end-start)/count) #<3> 
    values = mapf(ts) #<4> 
    return values.astype(np.int16) #<5> 

#1 Inputs are the function f to sample the start and end of the range and the number of values we want. 
#2 Creates a version of f that can be applied to a NumPy array 
#3 Creates the evenly spaced input values for the function over the desired range 
#4 Applies the function to every value in the NumPy array 
#5 Converts the resulting array to 16-bit integer values and returns it 

Equipped with the following function, you can hear the sound of a 441 Hz sinusoidal wave: 

sinusoid = make_sinusoid(441,8000) 
arr = sample(sinusoid, 0, 1, 44100) 
sound = pygame.sndarray.make_sound(arr) 
sound.play() 

If you play this alongside the 441 Hz square wave, you’ll notice that it plays the same note; in 
other words, it has the same pitch. However, the quality of the sound is much different; the 
sinusoidal wave plays a much smoother sound. It sounds almost like it could be coming out of 
a flute rather than out of an old-school video game. This quality of sound is called timbre 
(pronounced TAM-ber). 

For the rest of the chapter, we focus on sound waves that are built as combinations of sinusoids. 
It turns out that with the right combination, you can approximate any shape of wave and, 
therefore, any timbre you want. 

13.2.4 Exercises 

 
Exercise 13.2: Plot the tangent function tan(t) = sin(t)/cos(t). What is its period? 
Solution: The tangent function gets infinitely big in every period, so it helps to plot it with a restricted range of y values: 
from math import tan 

plot_function(tan,0,5*pi) 

plt.ylim(-10,10) #<1> 

#1 Limits the graph window to a y range of -10 < y < 10 
A graph of tan(x), which is periodic, looks like this: 
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Because tan(t) depends only on the values of cos(t) and sin(t), it should repeat itself at least every 2𝜋𝜋 units. In fact, it 
repeats itself twice every 2𝜋𝜋 units; we can see on the graph that its period is 𝜋𝜋. 
 

 
Exercise 13.3: What is the frequency of sin(3𝜋𝜋t)? What is the period? 
Solution: The frequency of sin(t) is 1/(2𝜋𝜋) and multiplying the argument by 3𝜋𝜋 increases this frequency by a factor of 
3𝜋𝜋. The resulting frequency is (3𝜋𝜋)/(2𝜋𝜋) = 3/2. The period is the reciprocal of this value, which is ⅔. 
 

 
Exercise 13.4: Find the value of k such that cos(kt) has a frequency of 5. Plot the resulting function cos(kt) from zero to 
one and show that it repeats itself 5 times. 
Solution: The default frequency of cos(t) is 1/2𝜋𝜋, so cos(kt) has a frequency of k/2𝜋𝜋. If we want this value to equal 5, 
we need to have k = 10𝜋𝜋. The resulting function is cos(10𝜋𝜋t): 
>>> plot_function(lambda t: cos(10*pi*t),0,1) 

Here is its graph, where it repeats itself five times between the values t = 0 to t = 1. 

 
 

13.3 Combining sound waves to make new ones 
In chapter 6, you learned that functions can be treated like vectors; you can add functions or 
multiply them by scalars to produce new functions. When you create linear combinations of 
functions defining sound waves, you can create new, interesting sounds. 
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The simplest way to combine two sound waves in Python is to sample both and then add the 
corresponding values of the two arrays to create a new one. We start by writing some Python 
code to add sampled sound waves of different frequencies, and the result they produce will 
sound like a musical chord, just as if you strummed several strings of a guitar at once. 

Once we do that, we can do a more advanced and more surprising example—we’ll add together 
several dozen sinusoidal sound waves of different frequencies in a prescribed linear combination, 
and the result will look and sound like the square wave from before. 

13.3.1 Adding sampled sound waves to build a chord 

NumPy arrays can be added using the ordinary + operator in Python, making the job of adding 
sampled sound waves easy. Here’s a small example showing that NumPy does addition by 
adding the corresponding values of each array to build a new array: 

>>> np.array([1,2,3]) + np.array([4,5,6]) 
array([5, 7, 9]) 

It turns out that doing this operation with two sampled sound waves produces the same sound 
as if you played both at once. Here are two samples: our sinusoid at 441 Hz and a second 
sinusoid at 551 Hz, approximately 5/4 of the frequency of the first: 

sample1 = sample(make_sinusoid(441,8000),0,1,44100) 
sample2 = sample(make_sinusoid(551,8000),0,1,44100) 

If you ask PyGame to start one and immediately start playing the next, it plays the two sounds 
almost simultaneously. If you run the following code, you should hear a chord consisting of two 
different musical notes. If you run either of the last two lines on its own, you hear one of the 
two individual notes: 

sound1 = pygame.sndarray.make_sound(sample1) 
sound2 = pygame.sndarray.make_sound(sample2) 
sound1.play() 
sound2.play() 

Now, using NumPy, we can add the two sample arrays to produce a new one and play it with 
PyGame. When sample1 and sample2 are added, a new array of length 44,100 is created, 
containing the sums of entries from sample1 and sample2. If you play the result, it sounds 
exactly like playing the previous sounds: 

chord = pygame.sndarray.make_sound(sample1 + sample2) 
chord.play() 

13.3.2 Picturing the sum of two sound waves 

Let’s see what this looks like in terms of the graphs of the sound waves. Here are the first 400 
points of sample1 (441 Hz) and sample2 (551 Hz). In figure 13.15, you can see that sample 1 
makes it through four periods, while sample 2 makes it through five periods. 
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Figure 13.15: Plotting the first 200 points of sample1 and sample2 

It might come as a surprise that the sum of sample1 and sample2 doesn’t produce a sinusoid 
even though it’s built out of two sinusoids. Instead, the sequence sample1 + sample2 traces a 
wave whose amplitude seems to fluctuate. Figure 13.16 shows what the sum looks like. 

 
Figure 13.16: Plotting the sum of the two waves, sample1 + sample2 

Let’s look closely at the summation to see how we got this shape. Near the 25th point of the 
sample, the waves are both large and positive, so the 25th point of the sum is also large and 
positive. At the 380th point, both waves have large, negative values and so does their sum. 
When two waves align, their sum is even bigger (and louder), which is called constructive 
interference. 

There’s an interesting effect in figure 13.17, where the values are opposite (near the 225th 
point). For example, sample1 is large and positive while sample2 is large and negative. This 
causes their sum to be close to zero even though neither wave on its own is close to zero. When 
two waves cancel each other out like this, it is called destructive interference. 

Because the waves have different frequencies, they go in and out of sync with each other, 
alternating between constructive and destructive interference. As a consequence, the sum of 
the waves is not a sinusoid; rather, it appears to change amplitude over time. Figure 13.17 
displays the two graphs lined up, showing the relationship between the two samples and their 
sum. 
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Figure 13.17: The absolute value of the sum wave is large where there is constructive interference and small 
where there is destructive interference. 

As you can see, the relative frequencies of summed sinusoids have an influence on the shape 
of the resulting graph. Next, I show you an even more extreme example of this as we build a 
linear combination with several dozen sinusoidal functions. 

13.3.3 Building a linear combination of sinusoids 

Let’s start with a big collection of sinusoids of different frequencies. We can make a list (as long 
as we want) of sine functions, starting with: 

 
These functions have the frequencies 1, 2, 3, 4, and so on. Likewise, the list of cosine functions, 
starting with 

 
has the respective frequencies 1, 2, 3, 4, and so on. The idea is that with so many different 
frequencies at our disposal, we can create a wide variety of different shapes by taking linear 
combinations of these functions. For reasons we’ll see later, I’ll also include a constant function 
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f(x) = 1 in the linear combination. If we pick some highest frequency N, the most general linear 
combination of the sines, cosines, and a constant is given by figure 13.18. 

 
Figure 13.18: The sine and cosine functions in our linear combination 

This linear combination is called a Fourier series, and it is, itself, a function of the variable t. It 
is specified by 2N + 1 numbers: the constant term a0, the coefficients a1 through aN on the 
cosine functions, and the coefficients b1 through bN on the sine functions. We can evaluate the 
function by plugging a given t value into every sine and cosine, and adding the linear 
combination of results. Let’s do this in Python, so we can easily test out a few different Fourier 
series.  

The fourier_series function takes a single constant a0, and lists a and b containing the 
coefficients a1, ... , aN and b1, ... , bN, respectively. This function works even if the arrays are 
different lengths; it’s as if the unspecified coefficients are zero. Note that the sine and cosine 
frequencies start from one, while Python’s enumerate starts with zero, so (n + 1) is the 
frequency corresponding to the coefficient at index n in either of the arrays: 

def const(n): #<1> 
    return 1 
 
def fourier_series(a0,a,b): 

    def result(t): 
        cos_terms = [an*cos(2*pi*(n+1)*t)  

            for (n,an) in enumerate(a)] #<2> 
        sin_terms = [bn*sin(2*pi*(n+1)*t) 

            for (n,bn) in enumerate(b)] #<3> 
        return a0*const(t) + \ 

            sum(cos_terms) + sum(sin_terms) #<4> 
    return result 

#1 Creates a constant function that returns 1 for any input 
#2 Evaluates all cosine terms with their respective constants and adds the results 
#3 Evaluates the sine terms with their respective constants and adds the results 
#4 Adds both of the results with the constant coefficient a0 times the value of the constant function (1) 

Here’s an example for calling this function with b4 = 1 and b5 = 1, and all other constants are 
0. This is a very short Fourier series, sin(8𝜋𝜋t) + sin(10𝜋𝜋t), whose plot is shown in figure 13.19. 
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Because the ratio of the frequencies is 4:5, the shape of the result should look like the last graph 
we plotted (figure 13.17): 

>>> f = fourier_series(0,[0,0,0,0,0],[0,0,0,1,1]) 
>>> plot_function(f,0,1) 

 
Figure 13.19: The graph of the Fourier series sin(8𝜋𝜋t) + sin(10𝜋𝜋t) 

This is a good test to see if our function is working, but it doesn’t show the full power of the 
Fourier series yet. Next, we try a Fourier series with more terms. 

13.3.4 Building a familiar function with sinusoids 

Let’s create a Fourier series that still has no constant and no cosine terms, but a lot more sine 
terms. Specifically, we use the following sequence of values for b1, b2, b3, and so on: 
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Or bn = 0 for every even n, while bn = 4/(n𝜋𝜋) when n is odd. This gives us a base to make a 
Fourier series with as many terms as we want. For instance, the first non-zero term is 

 
and with the next term that gets added, the series becomes 

 
Here is the code, and figure 13.20 shows the graphs of these two functions plotted 
simultaneously. 

>>> f1 = fourier_series(0,[],[4/pi]) 
>>> f3 = fourier_series(0,[],[4/pi,0,4/(3*pi)]) 
>>> plot_function(f1,0,1) 
>>> plot_function(f3,0,1) 
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Figure 13.20: A plot of the first term and then the first two terms of the Fourier series 

Using a list comprehension, we can make a much longer list of the coefficients, bn, and construct 
the Fourier series programmatically. We can leave the list of cosine coefficients empty, and it 
will be as if all of the an values are set to 0: 

b = [4/(n * pi)  
    if n%2 != 0 else 0 for n in range(1,10)] #<1> 

f = fourier_series(0,[],b) 

#1 Lists the values of bn = 4/n𝜋𝜋 for odd values of n and bn = 0, otherwise 

This list covers 1 ≤ n < 10, so the non-zero coefficients are b1, b3, b5, b7, and b9. With these 
terms, the graph of the series looks like figure 13.21. 

 
Figure 13.21: A sum of the first 5 non-zero terms of the Fourier series 

This is an interesting pattern of constructive and destructive interference! Around t = 0 and t = 
1, all of the sine functions are simultaneously increasing, while around t = 0.5, they are all 
simultaneously decreasing. This constructive interference is the dominant effect, while 
alternating constructive and destructive interference keeps the graph relatively flat in the other 
regions. With n ranging up to 19, as shown in figure 13.22, there are 10 non-zero terms and 
this effect is even more striking. 

>>> b = [4/(n * pi) if n%2 != 0 else 0 for n in range(1,20)] 
>>> f = fourier_series(0,[],b) 
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Figure 13.22: The first 10 non-zero terms of the Fourier series 

If we let n range all the way up to 99, we get a sum of 50 sine functions, and the function 
becomes nearly flat outside of a few big jumps (figure 13.23). 

>>> b = [4/(n * pi) if n%2 != 0 else 0 for n in range(1,100)] 
>>> f = fourier_series(0,[],b) 

 
Figure 13.23: With 99 terms, the graph of the Fourier series is nearly flat, apart from big steps at 0, 0.5, and 
1.0. 

If you zoom out, you can see that this Fourier series comes close to the square wave we plotted 
at the beginning of the chapter (figure 13.24). 

 
Figure 13.24: The first 50 non-zero terms of the Fourier series are close to a square wave, like the first function 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

we met in this chapter. 

What we’ve done here is to build an approximation of the square wave function as a linear 
combination of sinusoids. It’s counterintuitive that we can do this! After all, all of the sinusoids 
in the Fourier series are round and smooth, and the square wave is flat and jagged. We’ll 
conclude this chapter by showing how to reverse engineer this approximation, starting with any 
periodic function and recovering the coefficients for a Fourier series that approximates it. 

13.3.5 Exercises 

 
Mini-project 13.5: Create a manipulated version of the square wave Fourier series so that its frequency is 441 Hz, then 
sample it and confirm that it doesn’t just look like the square wave. It should sound like the square wave as well. 
 

13.4 Decomposing a sound wave into its Fourier series 
Our last goal is to take an arbitrary periodic function, like the square wave, and figure out how 
to write it (or at least an approximation of it) as a linear combination of sinusoidal functions. 
This means breaking any sound wave into a combination of pure notes. As a basic example, 
we’ll look at a sound wave defining a chord and identify which notes make up the chord. More 
profoundly, we can break any sound into musical notes: a person talking, a dog barking, or a 
car revving its engine. Behind this result are some elegant mathematical ideas, and you now 
have all the background you need to understand them. 

The process of breaking a function into its Fourier series is analogous to writing a vector as a 
linear combination of basis vectors as we did in part 1. Here’s how the analogy works. We’ll 
work in the vector space of functions and think of a function like the square wave, as a function 
of interest. Then, we’ll think of our basis as the set of functions sin(2𝜋𝜋t), sin(4𝜋𝜋t), sin(6𝜋𝜋t), and 
so on. In section 13.3, we approximated the square wave as a linear combination beginning 
with  

 
You can picture two of the basis vectors, sin(2𝜋𝜋t) and sin(6𝜋𝜋t), as defining two perpendicular 
directions in the infinite-dimensional space of functions with many other directions defined by 
the other basis vectors. The square wave has a component of length 4/𝜋𝜋 in the sin(2𝜋𝜋t) direction 
and a component of length 4/3𝜋𝜋 in the sin(6𝜋𝜋t) direction. These are the first two in what would 
be an infinite list of coordinates for the square wave in this basis (figure 13.25). 
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Figure 13.25: You can think of the square wave as a vector in the space of functions with a component length of 
4/𝜋𝜋 in the sin(2𝜋𝜋t) direction and component length of 4/3𝜋𝜋 in the sin(6𝜋𝜋t) direction. The square wave has 
infinitely many more components beyond these two. 

We can write a fourier_coefficients(f,N) function that takes a function f, which is periodic 
with period one, and a number N of desired coefficients. The function treats the constant 
function, as well as the functions cos(2n𝜋𝜋t) and sin(2n𝜋𝜋t) from 1 ≤ n < N, as directions in the 
vector space of functions and find the components of f in those directions. It returns the Fourier 
coefficient a0, representing the constant function, a list of Fourier coefficients a1, a2, ..., aN, and 
a list of Fourier coefficients b1, b2, ..., bN as a result. 

13.4.1 Finding vector components with an inner product 

In chapter 6, we covered how to do vector sums and scalar multiples with functions in analogy 
with the operations with 2D and 3D vectors. Another tool we need is an analogy for the dot 
product. The dot product is one example of an inner product, a way of multiplying two vectors 
to get a scalar that measures how aligned are the two vectors. 

Let’s think back to the 3D world for a moment and show how to use the dot product to find 
components of a 3D vector, then we’ll do the same thing to find components of a function in the 
basis of sinusoidal functions. Suppose our goal is to find the components of the vector v = (3, 
4, 5) in the directions of the standard basis vectors, e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 
0, 1). This question is so obvious that we never put much thought into it: the components are 
3, 4, and 5, respectively; that’s what the coordinates (3, 4, 5) mean! 
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Here, I’ll show you another way to find the components of v = (3, 4, 5) using the dot product. 
It’s going to be overkill because we already have the answer, but it will be useful for the case 
of function vectors. Notice that each of the dot products of v with a standard basis vector gives 
us back one of the components: 

 

 

 
These dot products immediately tell us how to build v as a linear combination of the standard 
basis: v = 3e1 + 4e2 + 5e3. Be careful. This only works because the dot product agrees with 
our definitions of lengths and angles. Any pair of perpendicular standard basis vectors has zero 
dot product:  

 
And the dot products of standard basis vectors with themselves yield their (squared) lengths of 
one: 

 
Another way to look at these relationships is that, according to the dot product, none of the 
standard basis vectors have components in the direction of the other standard basis vectors. 
Furthermore, each standard basis vector has component 1 in its own direction. If we want to 
invent an inner product to calculate components of functions, we need our basis to have the 
same desirable properties. In other words, we need to know that our basis functions, like 
sin(2𝜋𝜋t), cos(2𝜋𝜋t), and so, on are all perpendicular and have length 1. We’ll create an inner 
product for functions and test these facts. 

13.4.2 Defining an inner product for periodic functions 

Suppose f(t) and g(t) are two functions defined on the interval from t = 0 to t = 1, and that 
these repeat themselves every one unit of t. We can write the inner product of f and g as〈f, g
〉and define it by a definite integral: 
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Let’s implement this in Python code, approximating the integral as a Riemann sum (as we did 
in chapter 8), so you can get a sense for how this inner product works like the familiar dot 
product. This Riemann sum defaults to 1,000 time steps as shown here: 

def inner_product(f,g,N=1000): 
    dt = 1/N #<1> 
    return 2*sum([f(t)*g(t)*dt  

                  for t in np.arange(0,1,dt)]) #<2> 

#1 The dt size defaults to 1/1000 = 0.001. 
#2 For each time step, the contribution to the integral is f(t) * g(t) * dt. The integral’s result is multiplied by 2, according 

to the formula. 

Like the dot product, this integral approximation is a sum of products of values from the input 
vectors. Instead of being a sum of products of coordinates, it is a sum of products of function 
values. You can think of a function’s values as a set of infinitely many coordinates, and this inner 
product as being a kind of “infinite dot product” over these coordinates. 

Let’s take this inner product for a spin. For convenience, let’s define some Python functions to 
create the nth sine and cosine functions in our basis, and then we can test them with the 
inner_product function. These functions are like simplified versions of the make_sinusoid 
function from section 13.2.3: 

def s(n): #<1> 
    def f(t): 
        return sin(2*pi*n*t) 
    return f 
 
def c(n): #<2> 
    def f(t): 
        return cos(2*pi*n*t) 
    return f 

#1 s(n) takes a whole number n and returns the function sin(2n𝜋𝜋t). 
#2 c(n) takes a whole number n and returns the function cos(2n𝜋𝜋t). 

A dot product of two 3D vectors like (1, 0, 0) and (0, 1, 0) returns zero, confirming they are 
perpendicular. Our inner product shows that all of our pairs’ basis functions are (approximately) 
perpendicular. For instance, 

>>> inner_product(s(1),c(1)) 
4.2197487366314734e-17 
>>> inner_product(s(1),s(2)) 
-1.4176155163484784e-18 
>>> inner_product(c(3),s(10)) 
-1.7092447249233977e-16 
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These numbers are extremely close to zero, confirming that sin(2𝜋𝜋t) and cos(2𝜋𝜋t) are 
perpendicular, and sin(2𝜋𝜋t) and sin(4𝜋𝜋t) are perpendicular, as well as cos(6𝜋𝜋t) and cos(20𝜋𝜋t). 
Using exact integration formulas, which we won’t cover here, it’s possible to prove that for any 
whole numbers n and m: 

 
And for any pair of distinct whole numbers n and m, both 

 
and 

 
This is a way of saying that with respect to this inner product, all of our sinusoidal basis functions 
are perpendicular; none has a component in the direction of another. The other thing we need 
to check is that the inner product implies our basis vectors have components of 1 in their own 
directions. Indeed, within numerical error, this looks to be true: 

>>> inner_product(s(1),s(1)) 
1.0000000000000002 
>>> inner_product(c(1),c(1)) 
0.9999999999999999 
>>> inner_product(c(3),c(3)) 
1.0 

Even though we won’t go through it here, using integral formulas makes it possible to prove 
directly that for any whole number n 

 
and 

 
The last bit of tidying up we need to do is to include our constant function in this discussion. I 
promised before that I’d explain why we need to include a constant term in the Fourier series, 
and now I can give an initial explanation. The constant function is required to build a complete 
basis of functions; not including this would be like omitting e2 from the basis for 3D space and 
going forward with e1 and e3. If you did that, there’d be functions you simply couldn’t build out 
of basis vectors. 

Any constant function is perpendicular to every sine and cosine function in our basis, but we 
need to pick the value of the constant function so that it has component 1 in its own direction. 
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That is, if we implement a Python function const(t), we should find that 
inner_product(const,const) returns 1. The right constant value for const to return turns out 
to be 1/√2 (and you can check in the following exercise that this value makes sense!): 

from math import sqrt 
 
def const(n): 
    return 1 /sqrt(2) 

With this defined, we can confirm the constant function has the right properties: 

>>> inner_product(const,s(1)) 
-2.2580204307905138e-17 
>>> inner_product(const,c(1)) 
-3.404394821604484e-17 
>>> inner_product(const,const) 
1.0000000000000007 

We now have the tools we need to find the Fourier coefficients of a periodic function. These 
coefficients are nothing more than components of the function in the basis we’ve defined. 

13.4.3 Writing a function to find Fourier coefficients 

In the 3D example, we saw that the dot product of a vector v with a basis vector ei gave us the 
component of v in the direction of ei. We’ll use the same process for a periodic function f. 

The coefficients an for n ≥ 1 tell us the components of f in the direction of the basis function 
cos(2n𝜋𝜋t). They are computed as the inner products of f with these basis functions: 

 
Likewise, every Fourier coefficient bn tells us the component of f in the direction of a basis 
function sin(2n𝜋𝜋t) and can also be computed with an inner product: 

 
Finally, the number a0 is the inner product of f with the constant function, whose value is 1/√2. 
All of these Fourier coefficients can be computed with Python functions we’ve already written, 
so we’re ready to assemble the fourier_coefficients function we set out to write. Remember, 
the first argument to the function is the function we want to analyze, and the second argument 
is the maximum number of sine and cosine terms we want: 

def fourier_coefficients(f,N): 
    a0 = inner_product(f,const) #<1> 
    an = [inner_product(f,c(n))  

          for n in range(1,N+1)] #<2> 
    bn = [inner_product(f,s(n))  

          for n in range(1,N+1)] #<3> 
    return a0, an, bn 
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#1 The constant term a0 is the inner product of f with the constant basis function. 
#2 The coefficients an are given by inner products of f with cos(2n𝜋𝜋t) for 1 ≤ n < N + 1. 
#3 The coefficients bn are given by inner products of f with sin(2n𝜋𝜋t) for 1 ≤ n < N + 1. 

As a sanity check, a Fourier series should give back its own coefficients. For instance: 

>>> f = fourier_series(0,[2,3,4],[5,6,7]) 
>>> fourier_coefficients(f,3) 
(-3.812922200197022e-15, 
 [1.9999999999999887, 2.999999999999999, 4.0], 
 [5.000000000000002, 6.000000000000001, 7.0000000000000036]) 

NOTE: If you want the inputs and outputs to match non-zero constant terms, you need to revise the const 

function to be f(t) = 1/√2 instead of f(t) = 1. See exercise 13.8. 

Now that we can automatically compute Fourier coefficients, we can conclude our exploration 
by building some Fourier approximations of interestingly shaped periodic functions. 

13.4.4 Finding the Fourier coefficients for the square wave 

We saw in the last section that the Fourier coefficients for the square wave were all zero except 
for the bn coefficients for odd n values. That is, the Fourier series is built as a linear combination 
of the function sin(2n𝜋𝜋t) for odd values of n. For odd n, the coefficient was bn = 4/n𝜋𝜋. I didn’t 
explain why those were the coefficients, but now we can check our work. 

To make a square wave that repeats itself every unit of t, we can use the value t%1 in Python, 
which computes the fractional part of t. Because, for example, 2.3 % 1 is 0.3 and 0.3 % 1 is 
0.3, a function written in terms of t % 1 is automatically periodic with the period 1. The square 
wave has a value of +1 when t % 1 < 0.5 and -1 otherwise: 

def square(t): 
    return 1 if (t%1) < 0.5 else -1 

Let’s look at the first 10 Fourier coefficients for this square wave. Run 

a0, a, b = fourier_coefficients(square,10) 

and you’ll see that a0 and the entries of a are all small, as with every other entry of b. The 
values of b1, b3, b5, and so on are represented by b[0], b[2], b[4], …, because Python arrays 
are zero-indexed. These are all close to the expected values:  

>>> b[0], 4/pi 
(1.273235355942202, 1.2732395447351628) 
>>> b[2], 4/(3*pi) 
(0.4244006151333577, 0.4244131815783876) 
>>> b[4], 4/(5*pi) 
(0.2546269646514865, 0.25464790894703254) 

We already saw that a Fourier series with these coefficients is a solid approximation of the 
square wave graph. Let’s conclude this section by looking at two example functions we haven’t 
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seen before and plotting the Fourier series alongside the original functions to show that the 
approximation works. 

13.4.5 Fourier coefficients for other waveforms 

Next, we consider more functions beyond the square wave graph that can be modeled using a 
Fourier transform. Figure 13.26 shows a new, interestingly-shaped waveform called a sawtooth 
wave. 

 
Figure 13.26: A sawtooth wave plotted over five periods. 

On the intervals from t = 0 to t = 1, the sawtooth wave is identical to the function f(t) = t and 
then it repeats itself every one unit. To define the sawtooth wave as a Python function, we can 
simply write: 

def sawtooth(t): 
    return t%1 

To see its Fourier series approximation with up to 10 sine and cosine terms, we can plug the 
Fourier coefficients directly into our Fourier series function. Plotting it alongside the sawtooth, 
as shown in figure 13.27, we can see it has a good fit. 

>>> approx = fourier_series(*fourier_coefficients(sawtooth,10)) 
>>> plot_function(sawtooth,0,5) 
>>> plot_function(approx,0,5) 

 
Figure 13.27: The original sawtooth wave from figure 13.26 with its Fourier series approximation  
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Once again, it’s striking how close we can come to a function with sharp corners using only a 
linear combination of smooth sine and cosine waves. This function happens to have a non-zero 
constant coefficient a0. That’s required because this function only has values above zero, while 
sine and cosine functions contribute negative values. 

As a final example, take a look at the following function defined as speedbumps(t) in the source 
code for this book. Figure 13.28 shows the graph. 

 
Figure 13.28: The speedbumps(t) function that alternates between flat stretches and round bumps 

The implementation of this function isn’t important, but this one is an interesting example 
because it has non-zero coefficients for the cosine functions and all zeros for the sines. Even 
with 10 terms, we get a good approximation. Figure 13.29 shows the graph of the Fourier series 
with a0 and ten cosine terms (the coefficients bn are all zero). 

 
Figure 13.29: The constant term and first 10 cosine terms for the Fourier series of the speedbumps(t) 
function 

You can see some wobbles when we graph these approximations, but when these waveforms 
are translated to sound, the Fourier series can be good enough. Because we are able to 
transform waveforms of all shapes to lists of their Fourier coefficients, we can store and transmit 
audio files efficiently. 
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13.4.6 Exercises 

 
Exercise 13.6: The vectors u1 = (2, 0, 0), u2 = (0, 1, 1), and u3 = (1, 0, -1) form a basis for ℝ3. For a vector v = (3, 4, 5), 
compute three dot products a1 = v ⋅ u1, a2 = v ⋅ u2, and a3 = v ⋅ u3. Show that v is not equal to a1u1 + a2u2 + a3u3. Why 
aren’t they equal? 
Solution: The dot products are 

 

 

 
That makes the linear combination 6 ⋅ (2, 0, 0) + 9 ⋅ (0, 1, 1) − 2 ⋅ (1, 0, -1) = (16, 9, 2), which is not equal to (3, 4, 5). 
This approach does not give the correct result because these basis vectors do not have length 1 and are not 
perpendicular to each other. 
 

 
Mini-project 13.7: Suppose f(t) is constant, meaning f(t) = k. Use the integral formula for the inner product to find a 

value k making〈f, f〉= 1. (Yes, I’ve already told you that k = 1/√2 but see if you can get to that value yourself! 

Solution: If f(t) = k, then〈f, f〉is given by the integral: 

 
(The area under the constant function k2 from 0 to 1 is k2.) If we want 2k2 to equal 1, then k2 = and k = √½ = 1/√2. 
 

 
Exercise 13.8: Update the fourier_series function to use f(t) = 1/√2 for the constant function instead of f(t) = 1. 
Solution:  
def fourier_series(a0,a,b): 

    def result(t): 

        cos_terms = [an*cos(2*pi*(n+1)*t) for (n,an) in enumerate(a)] 

        sin_terms = [bn*sin(2*pi*(n+1)*t) for (n,bn) in enumerate(b)] 

        return a0/sqrt(2) + sum(cos_terms) + sum(sin_terms) #<1> 

    return result 

#1 Multiplies the coefficient a0 by the constant function f(t) = 1/√𝟐𝟐 in the linear combination, contributing a0/√𝟐𝟐 to 
the Fourier series result regardless of the value of t 
 

 
Mini project 13.9: Play a sawtooth wave at 441 Hz and compare it with the square and sinusoidal waves you played at 
that frequency. 
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Solution: We can create a modified sawtooth wave function with amplitude 8,000 and frequency 441 and then sample 
it to pass to PyGame: 
def modified_sawtooth(t): 

    return 8000 * sawtooth(441*t) 

arr = sample(modified_sawtooth,0,1,44100) 

sound = pygame.sndarray.make_sound(arr) 

sound.play() 
People often compare the sound of a sawtooth wave to that of a string instrument, like a violin. 
 

13.5 Summary 
• Sound waves are pressure changes over time that propagate through the air to our ears 

where we perceive these as sounds. We can represent a sound wave as a function that 
loosely represents the change in air pressure over time. 

• PyGame and most other digital audio systems used sampled audio. Rather than a function 
defining a sound wave, these systems use arrays of values of the function taken at 
uniform intervals. For instance, CD audio commonly uses 44,100 values for each second 
of audio. 

• Sound waves with random shapes sound like noise, while waves with shapes that repeat 
on fixed intervals produce well-defined musical notes. A function that repeats its values 
on a certain interval is called a periodic function. 

• The sine and cosine functions are periodic functions, and their graphs repeat curved 
shapes called sinusoids.  

• Sine and cosine repeat their values every 2𝜋𝜋 units. That value is called their period. The 
frequency of a periodic function is the reciprocal of the period, which is 1/(2𝜋𝜋) for sine 
and cosine. 

• A function of the form sin(2n𝜋𝜋t) or cos(2n𝜋𝜋t) has frequency n. High frequency sound 
wave functions produce high-pitched musical notes.  

• The maximum height of a periodic function is called its amplitude. Multiplying a sine or 
cosine function by a number increases the amplitude of the function and the volume of 
the corresponding sound wave. 

• To create the effect of two sounds playing at once, you can add the functions that define 
their corresponding sound waves to create a new function and a new sound wave. 
Generally, you can take any linear combination of existing sound waves to create a new 
sound wave. 

• A linear combination of a constant function along with functions of the form sin(2n𝜋𝜋t) 
and cos(2n𝜋𝜋t) for various values of n is called a Fourier series. Despite being built out of 
smooth sine and cosine functions, Fourier series can be good approximations for any 
periodic functions, even those with sharp corners like square waves. 

• You can think of the constant function along with the sines and cosines at different 
frequencies as a basis for the vector space of periodic functions. The linear combination 
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of these basis vectors that best approximate a given function are called Fourier 
coefficients. 

• We can use the dot product of a 2D or 3D vector with a standard basis vector to find its 
component in the direction of that basis vector.  

• Analogously, we can take a special inner product of a periodic function with a sine or 
cosine function to find a component associated with that function. The inner product for 
periodic functions is a definite integral taken over a specified range; in our case, from 
zero to one. 
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Fitting functions to data 

This chapter covers 

• Measuring how closely a function models a data set 
• Exploring spaces of functions determined by constants 
• Using gradient descent to optimize the quality of “fit”  
• Modeling data sets with different kinds of functions 

The calculus techniques you learned in part 2 require well-behaved functions to be applicable. 
For a derivative to exist, a function needs to be sufficiently smooth, and to calculate an exact 
derivative or integral, you need a function to have a simple formula. For most real-world data, 
we aren’t so lucky. Due to randomness or measurement error, we rarely come across perfectly 
smooth functions in the wild. In this chapter, we cover how to take messy data and model it 
with a simple mathematical function—a task called regression. 

I’ll walk you through an example on a real data set, consisting of 740 used cars listed for sale 
on the website CarGraph.com. These cars are all Toyota Priuses, and they all have mileage and 
sale price reported. Plotting this data on a scatter plot, figure 14.1 shows that we can see there’s 
a downward trend in price as mileage increases. This reflects that cars lose value as they are 
driven. Our goal is to come up with a simple function that describes how the price of a used 
Prius changes as its mileage increases. 
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Figure 14.1: A plot of price vs. mileage for used Toyota Priuses listed for sale on CarGraph.com 

We can’t draw a smooth function that passes through all of these points, and even if we could, 
it would be nonsensical. Many of these points are outliers and probably erroneous (for instance, 
the handful of nearly new cars that are selling for less than $5,000 in figure 14.1). And there 
are certainly other factors that affect the resale price of a used car. We shouldn’t expect mileage 
alone to put an exact value on the price.  

What we can do is find a function that approximates the trend of this data. Our function p(x) 
takes mileage x as an input and returns a typical price for a Prius with that given mileage. To 
do this, we need to make a hypothesis about what kind of function this will be. We can start 
with the simplest possible example: a linear function. 

We looked at linear functions in many forms in chapter 7, but in this chapter, we’ll write these 
in the format p(x) = ax + b, where x is the mileage of a car, p is its price, and a and b are 
numbers that determine the shape of the function. With a choice of a and b, this function is an 
imaginary machine that takes the mileage of a Toyota Prius and predicts its price as shown in 
figure 14.2. 

 
Figure 14.2: A schematic of a linear function predicting price p from mileage x. 
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Remember, a is the slope of the line and b is its value at zero. With values like a = -0.05 and b 
= 20,000, the graph of the function becomes a line starting at a price of $20,000 and decreasing 
by $0.05 every time the mileage increases by one mile (figure 14.3). 

 
Figure 14.3: Predicting the price of a Prius based on the mileage, using a function of the form p(x) = ax + b with 
a = -0.05 and b = 20,000 

This choice of prediction function implies a new Prius is worth $20,000, and that it depreciates 
or loses value at a rate of $0.05 per mile. These values may or may not be correct; in fact, we 
have reason to believe they aren’t perfect because the graph of this line doesn’t come close to 
most of the data. The task of finding the values of a and b so that p(x) follows the trend of the 
data as well as possible is called linear regression. Once we find the best values, we can say 
p(x) is the line of best fit. 

If p(x) is going to come close to the real data, it seems reasonable that slope a should be 
negative so that the predicted price decreases as mileage increases. We won’t have to assume 
that, however, because we can implement an algorithm that figures this out directly from the 
raw data. This is why regression is a simple example of a machine learning algorithm; based on 
data alone, it infers a trend and can then make predictions about new data points. 

The only real constraint we impose is that our algorithm looks for linear functions. A linear 
function assumes that the rate of depreciation is constant: that the loss in dollar value of the 
car in its first 1,000 miles is the same as the loss in value during 100,000 to 101,000 miles. 
Conventional wisdom says this is not the case, and in fact, that cars lose a good portion of their 
value the moment they are driven off the lot. Our goal will not be to find the perfect model, but 
to find a simple model that still performs well. 
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The first thing we need to do is be able to measure how well a given linear function, meaning a 
given choice of a and b, predicts the price of a Prius from its mileage. To do this, we write a 
function in Python, called a cost function, which takes a function p(x) as input and returns a 
number telling us how far it is from the raw data. For any pair of numbers a and b, we can then 
measure how well the function p(x) = ax + b fits the data set using the cost function. There’s 
one linear function for every pair (a, b), so we can think of our task as exploring the 2D space 
of such pairs and evaluating the linear function they imply. 

Figure 14.4 shows that picking positive values of a and b yield a line, sloping upwards. If that 
were our price function, it would imply that a car gains value as it is driven, which is not likely. 

 
Figure 14.4: A pair of numbers (a, b) define a linear function that we can plot on a graph as a line. For positive 
values of a, the graph slopes upward. 

Our cost function compares a line like this to the actual data and returns a big number, indicating 
that the line is far away from the data. The closer the line gets to the data, the lower the cost 
and the better the fit.  

What we want are values of a and b that don’t just make the cost function small, but that make 
it the exact smallest function possible. The second major function we’ll write is called 
linear_regression, and it automatically finds these best values of a and b. This, in turn, tell 
us the line of best fit. To implement this, we build a function telling us the cost for any values 
of a and b and minimize it using the technique of gradient descent from chapter 12. Let’s get 
started by implementing a cost function in Python to measure how well a function fits a data 
set. 

14.1 Measuring the quality of fit for a function 
We’ll write our cost function so that it can work on any data set, not just our collection of used 
cars. That allows us to test it out on simpler (made-up) data sets, so we can see how it works. 
With that in mind, the cost function is a Python function taking two inputs. One of these is the 
Python function f(x) that we want to test, and the second is the data set to test against: a 
collection of (x, y) pairs. For the used car example, our f(x) might be a linear function giving a 
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cost in dollars for any mileage, and the (x, y) pairs are the actual values of mileage and price 
from the data set. 

The output of the cost function is a single number, measuring how far the values of f(x) are 
from the correct y values. If y = f(x), for every x, the function is a perfect fit for the data, so 
the cost function returns zero. More realistically, the function won’t agree exactly with all the 
data points, and it will return some positive number. We’ll actually write two cost functions to 
compare them and give you a sense of how cost functions work: 

• sum_error—Adds the distance from f(x) to y for every (x, y) value in the data set 
• sum_square_error—Adds up the squares of these distances 

The second of these is the cost function most commonly used in practice, and you’ll see why 
shortly. 

14.1.1 Measuring distance from a function 

In the source code for this book, you’ll find a made-up data set called test_data. It’s a Python 
list of (x, y) values, where the x values range from -1 to 1. I’ve intentionally chosen y values so 
that the points lie close to the line f(x) = 2x. Figure 14.5 shows a scatter plot of the test_data 
data set next to that line. 

 
Figure 14.5: A set of randomly generated data that intentionally stays close to the line f(x) = 2x 

The fact that f(x) = 2x stays close to the data set means that for any x value in the data set, 
2x is a pretty good guess for the corresponding y value. For instance, the point 

(x, y) = (0.2, 0.427) 
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is an actual value from the data set. Given only the value x = 0.2, our f(x) = 2x would have 
predicted y = 0.4. The absolute value of the difference |f(0.2) − 0.4| tells us the size of this 
error, which is about 0.027. 

An error value, which is the difference between the actual y value and the one predicted by the 
function f(x), can be pictured as the vertical distance from the actual (x, y) point to the graph 
of f. Figure 14.6 shows the error distances drawn as vertical lines. 

 
Figure 14.6: The error values are the differences between the function f(x) and the actual y values. 

Some of these errors are smaller than others, but how can we quantify the quality of the fit? 
Let’s compare this to a picture of a function, g(x) = 1 − x, which is obviously a bad fit (figure 
14.7). 
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Figure 14.7: Picturing a function with larger error values 

Our function, g(x) = 1 − x, happens to come close to one of the points, but the total of the 
errors is much larger. For that reason, we can write our first cost function by adding all of the 
errors. A larger sum of errors means a worse fit, while a lower value means a better fit. To 
implement this function, we simply iterate over the (x, y) pairs, take the absolute value of the 
difference between f(x) and y, and sum the results: 

def sum_error(f,data): 
    errors = [abs(f(x) - y) for (x,y) in data] 
    return sum(errors) 

To test this function, we can translate our f(x) and g(x) into code: 

def f(x):  
    return 2*x 
 
def g(x):  
    return 1-x 

As expected, the summed error for f(x) = 2x is lower than for g(x) = 1 − x: 

>>> sum_error(f,test_data) 
5.021727176394801 
>>> sum_error(g,test_data) 
38.47711311130152 

The exact values of these outputs don’t matter; what matters is the comparison between them. 
Because the sum of the error for f(x) is lower than for g(x), we can conclude that f(x) is a better 
fit for the given data. 
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14.1.2 Summing the squares of the errors 

The sum_error function might be the most obvious way to measure the distance from the line 
to the data, but in practice, we’ll use a cost function that sums up the squares of all the errors. 
There are a few good reasons for this. The simplest is because a squared distance function is 
smooth, so we can use derivatives to minimize it, while an absolute value function is not smooth, 
so we can’t take its derivative everywhere. Keep in mind the pictures of the graphs of functions 
|x| and x2 (figure 14.8), both of which return bigger values when x is further from 0, but only 
the latter is smooth at x = 0 and has a derivative there. 

 
Figure 14.8: The graph of y = |x| is not smooth at x = 0, but the graph of y = x2 is. 

Given a test function f(x), we can look at every (x, y) pair and add the value of (f(x) − y)2 to 
the cost. The sum_squared_error function does this, and its implementation doesn’t look much 
different than sum_error. We only need to square the error instead of taking its absolute value: 

def sum_squared_error(f,data): 
    squared_errors = [(f(x) - y)**2 for (x,y) in data] 
    return sum(squared_errors) 

We can also visualize this cost function. Instead of looking at the vertical distances between 
points and the graph of the function, we can think of those distances as edges of squares. The 
area of each square is the squared error for that data point, and the total area of all squares is 
the result of sum_squared_error. The total area of squares in figure 14.9 shows the sum of the 
squared error between test_data and f(x) = 2x. (Note that the squares don’t look like squares 
because the x- and y-axes have different scales!) 
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Figure 14.9: Picturing the sum of the squared error between a function and a data set 

A y value, which is twice as far from the graph in figure 14.9, contributes to the sum squared 
error by a factor of four. One of the reasons to prefer this cost function is that it penalizes poor 
fits more aggressively. For h(x) = 3x, you can see that the squares are quite a bit bigger (figure 
14.10). 

 
Figure 14.10: Picturing the sum_squared_error for h(x) = 3x relative to the test data 

It’s not worth drawing the squared errors for g(x) = 1 − x because the squares are so big they 
fill almost the whole chart area and overlap each other significantly. You can see, though, that 
the difference in value of the sum_squared_error is even more drastic for f(x) and g(x) than 
for the difference in sum_error: 
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>>> sum_squared_error(f,test_data) 
2.105175107540148 
>>> sum_squared_error(g,test_data) 
97.1078879283203 

The graph of y = x2 in figure 14.8 is clearly smooth, and it turns out that if you move the line 
by varying the parameters a and b that define it, the cost function changes “smoothly” as well. 
For this reason, we’ll continue using the sum_squared_error cost function. 

14.1.3 Calculating cost for car price functions 

I’ll start by making an educated guess about how Priuses depreciate as they gain mileage. There 
are several different models of Toyota Priuses, but I would guess the average retail price is 
about $25,000. To make the calculation simple, our first, naïve model assumes they stay on the 
road for 125,000 miles, after which they are worth exactly $0. That means that the cars 
depreciate at an average rate of $0.20 per mile. That implies the price p of a Prius in terms of 
its mileage x is given by subtracting 0.2x dollars of depreciation from the starting price of 
$25,000, and this means p(x) is a linear function because it has the familiar form, p(x) = ax + 
b, with a = -0.2 and b = 25,000:  

p(x) = -0.2x + 25,000 

Let’s see how this function looks on the graph by plotting it next to the CarGraph data (figure 
14.11). You can find the data and the Python code to plot it in the source code for this chapter. 

 
Figure 14.11: The scatter plot of price and mileage for used Priuses with my hypothetical depreciation function 
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Clearly, many of the cars in the data set have made it past my guess of 125,000 miles. That 
can mean that my guess of the depreciation rate was too high. Let’s try a depreciation rate of 
$0.10 per mile, implying a pricing function: 

p(x) = -0.10x + 25,000 

This isn’t perfect either. We can see on the graph in figure 14.12 that this function overestimates 
the price of the majority of the cars. 

 
Figure 14.12: Plotting a different function that assumes a depreciation of $0.10 per mile 

We can also experiment with the starting value, which we’ve assumed is $25,000. Anecdotally, 
a car loses much of its value the moment it drives off the lot, so a price of $25,000 might be an 
overestimation for a used car with very few miles on it. If the car loses 10% of its value when 
it drives off the lot, a price of $22,500 at zero mileage might give us better results (figure 
14.13). 
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Figure 14.13: Testing a starting value of $22,500 for used Toyota Priuses 

We can spend a lot of time speculating about what the best linear function is to fit the data, but 
to see if our speculations are improving, we need to use a cost function. Using the 
sum_squared_error function, we can measure which of our educated guesses is the closest to 
the data. Here are three pricing functions translated to Python code: 

def p1(x): 
    return 25000 - 0.2 * x 
 
def p2(x): 
    return 25000 - 0.1 * x 
 
def p3(x): 
    return 22500 - 0.1 * x 

The sum_squared_error function takes a function as well as a list of pairs of numbers 
representing the data. In this case, we want pairs of mileages and prices:   

prius_mileage_price = [(p.mileage, p.price) for p in priuses] 

Using the sum_squared_error function for each of the three pricing functions, we can compare 
their quality of fit to the data: 

>>> sum_squared_error(p1, prius_mileage_price) 
88782506640.24002 
>>> sum_squared_error(p2, prius_mileage_price) 
34723507681.56001 
>>> sum_squared_error(p3, prius_mileage_price) 
22997230681.560013 
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These are some big values, roughly 88.7 billion, 34.7 billion, and 22.9 billion, respectively. Once 
again, the values don’t matter, only their relative sizes. Because the last one is the lowest, we 
can conclude that p3 is the best of the three pricing functions. Given how unscientific I was when 
making up these functions, it seems likely I could keep guessing and find a linear function 
making the cost even lower. Rather than guessing and checking, we’ll look at how to explore 
the space of possible linear functions systematically. 

14.1.4 Exercises 

 
Exercise 14.1: Create a set of data points lying on a line and demonstrate that the sum_error and 
sum_squared_error cost functions both return exactly zero for the appropriate linear function. 
Solution: Here is a linear function and some points that lie on its graph: 
def line(x): 

    return 3*x-2 

points = [(x,line(x)) for x in range(0,10)] 

 
Both sum_error(line,points) and sum_squared_error(line,points) return zero because there is no 
distance from any of the points to the line. 
 

 
Exercise 14.2: Calculate the value of the cost for the two linear functions, x + 0.5 and 2x − 1. Which one produces a 
lower sum squared error relative to test_data, and what does that say about the quality of the fits? 
Solution:  
>>> sum_squared_error(lambda x:2*x-1,test_data) 

23.1942461283472 

>>> sum_squared_error(lambda x:x+0.5,test_data) 

16.607900877665685 
The function x + 0.5 produces a lower value for sum_squared_error, so it is a better fit to the test_data. 
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Exercise 14.3: Find a linear function p4 that fits the data even better than p1, p2, or p3. Demonstrate that it is a better 
fit by showing the cost function is lower than for p1, p2, or p3. 
Solution: The best fit we found so far is p3, represented by p(x) = 22,500 − 0.1 ∙ x. To get an even better fit, you can try 
tweaking the constants in this formula until the cost is reduced. One observation that you might make is that p3 was a 
better fit because we reduced the b value from 25,000 to 22,500. If we reduce it slightly further, the fit gets even 
better. If we define a new function p4 with a b value of 20,000 

def p4(x): 

    return 20000 - 0.1 * x 

it turns out the sum_squared_error is even lower: 

>>> sum_squared_error(p4, prius_mileage_price) 

18958453681.560005 
This is lower than the values for any of the three previous functions, demonstrating that it is a better fit to the data. 
 

14.2 Exploring spaces of functions 
We ended the last section by guessing some pricing functions of the form p(x) = ax + b, where 
x represents the mileage on a used Toyota Prius and p is a prediction of its price. By choosing 
different values of a and b and graphing the resulting function, p(x), we could tell which choices 
were better than others. The cost function gave us a way of measuring how close the functions 
came to the data, rather than eyeballing it. Our goal in this section is to systematize the process 
of trying different values of a and b to make the cost function as small as possible. 

If you did the last exercise from section 14.1 and searched manually for a better fit, you might 
have noticed that part of the challenge is tuning both a and b simultaneously. If you remember 
from chapter 6, the collection of all functions like p(x) = ax + b form a 2D vector space. When 
you guess and check, you’re blindly picking points in various directions in this 2D space and 
hoping the cost function decreases. 

In this section, we’ll try to understand the 2D space of possible linear functions by graphing the 
sum_squared_error cost function with respect to the parameters a and b, which define a linear 
function. Specifically, we can plot the cost as a function of the two parameters a and b, which 
define a choice of p(x) (figure 14.14). 
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Figure 14.14: A pair of numbers, (a, b), define a linear function. Comparing it to the fixed actual data produces 
the cost as a single number. 

The actual function we’ll plot takes two numbers, a and b, and returns one number, which is the 
cost of the function p(x) = ax + b. We call this function coefficient_cost(a,b) because the 
numbers a and b are coefficients. To plot such a function, we use a heatmap like we did in 
chapter 12. 

As a warm up, we can try to fit a function f(x) = ax to the test_data data set we used before. 
This is a simpler problem because test_data doesn’t have as many data points, and because 
we’ve only got one parameter to tune: f(x) = ax is a linear function with the value of b fixed at 
zero. The graph of a function of this form is a line through the origin and the coefficient a controls 
its slope. That means that there’s only one dimension to explore, and we can plot the value of 
the sum squared error versus the value of a, which is an ordinary function graph. 

14.2.1 Picturing cost for lines through the origin 

Let’s use the same test_data data set as before and compute the sum_squared_error from 
functions of the form f(x) = ax. We can then write a function test_data_coefficient_cost, 
taking the parameter a (the slope) and returning the cost for f(x) = ax. To do this, we first 
create the function f from the value of the input a and then we can pass it and the test data into 
the sum_squared_error cost function: 

def test_data_coefficient_cost(a): 
    def f(x): 
        return a * x 
    return sum_squared_error(f,test_data) 

Each value of this function corresponds to a choice of the slope, a, and, therefore, tells us the 
cost of a line we could plot alongside test_data. Figure 14.15 shows a scatter plot of a few 
values of a and their corresponding lines. I’ve drawn attention to the slope of a = -1, which 
produces the highest cost and the line with the worst fit. 
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Figure 14.15: Costs for various values of the slope a and the lines represented by each 

The test_data_coefficient_cost function turns out to be a smooth function that we can plot 
over a range of a values. The graph in figure 14.16 shows us that the cost gets lower and lower 
until it hits a minimum around a = 2 and then it starts increasing. 

 
Figure 14.16: A graph of cost vs. the slope a, showing the quality of fit for different slope values 

The graph in figure 14.16 tells us the line through the origin producing the lowest cost and, 
therefore, the best fit, which has roughly a slope of 2 (we’ll find the exact value shortly). To find 
the best linear function fitting the used car data, let’s look at the cost over a space with one 
more dimension. 

14.2.2 The space of all linear functions 

We’re looking for a function p(x) = ax + b that comes closest to predicting the price of a Prius 
based on its mileage as measured by the sum_squared_error function. To evaluate different 
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choices of the coefficients a and b, we need to first write a function coefficient_cost(a,b) 
that gives the sum squared error for p(x) = ax + b relative to the car data. This looks like the 
test_data_coefficient_cost function, except there are two parameters and we use a different 
data set: 

def coefficient_cost(a,b): 
    def p(x): 
        return a * x + b 
    return sum_squared_error(p,prius_mileage_price) 

Now, there’s a 2D space of pairs of coefficients (a,b), any of which gives us a different candidate 
function p(x) to compare with the price data. Figure 14.17 shows two points in the a,b plane 
and the corresponding lines on the graph. 

 
Figure 14.17: Different pairs of numbers (a,b) correspond to different price functions 

For every pair (a, b) and corresponding function p(x) = ax + b, we can compute the 
sum_squared_error function; that’s what the coefficient_cost function does for us in one 
step. This gives us a cost value for every point in the a,b plane that we can plot as a heat map 
(figure 14.18). 
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Figure 14.18: Cost for the linear function as a heatmap over values of a and b 

On this heatmap, you can see that when (a, b) are at their extremes, the cost function is high. 
The heatmap is darkest in the middle, but it’s not visually clear whether there’s a minimum 
value for the cost or exactly where it occurs. Fortunately, we have a method for finding where 
in the (a, b) plane the cost function is minimized—gradient descent. 

14.2.3 Exercises 

 
Exercise 14.4: Find the exact formula for a line through the origin that passes through one point (3, 4). Do this by 
finding the function f(x) = ax, which minimizes the sum squared error relative to this one-point data set. 
Solution: There is one coefficient we need to find, which is a. The sum of squared error is the squared difference 
between f(3) = a · 3 and 4. This is (3a − 4)2, which expands to 9a2 − 24a + 16. We can think of this as a cost function in 
terms of a; that is, c(a) = 9a2 − 24a + 16. 
The best value of a is the one that minimizes this cost. That value of a causes the derivative of the cost function to be 
zero. Using the derivative rules from chapter 10, we find c’(a) = 18a − 24. This is solved when a = 4/3, meaning our line 
of best fit is 

   
This clearly contains the origin and the point (4, 3). 
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Exercise 14.5: Suppose we use a linear function to model the price of a sports car with respect to its mileage with 
coefficients (a, b) = (-0.4,80000). In English, what does that say about how the car depreciates over time? 
 Solution: The value of ax + b when x = 0 is just b = 80,000. That means that at a mileage of 0, we can expect the car to 
sell for $80,000. The value a of -0.4 means that the function value ax + b decreases at a rate of 0.4 units for every one 
unit increase in x. That means that the car’s value decreases, on average, by 40 cents for every one mile it is driven. 
 

14.3 Finding the line of best fit using gradient descent 
In chapter 12, we used the gradient descent algorithm to minimize a smooth function of the 
form f(x, y). In simpler terms, that meant finding the values of x and y that made the value of 
f(x, y) as small as possible. Because we have a gradient_descent function implemented, we 
can simply pass it a Python version of a function we want to minimize, and it automatically finds 
the inputs that minimize it. 

Now, we want to find the values of a and b that make the cost of p(x) = ax + b as small as 
possible; in other words, minimizing the Python function coefficient_cost(a,b). When we 
plug coefficient_cost into our gradient_descent function, we get back the pair (a, b) such 
that p(x) = ax + b is the line of best fit. We can use the values of a and b that we find to plot 
the line ax + b and visually confirm that it’s a good fit to the data. 

14.3.1 Rescaling the data 

There’s one last tricky detail we need to deal with before applying gradient descent. The numbers 
we’ve been working with have drastically different sizes: the depreciation rates are between 0 
and -1, the prices are in the tens of thousands, and the cost function returned results in the 
hundreds of billions. If we don’t specify otherwise, our derivative approximation is taken using 
a dx value of 10-6. Because these numbers differ so greatly in magnitude, we can run into 
numerical errors if we try to run the gradient descent as is. 

NOTE: I won’t go into the details of the issues that come up; my goal is to show you how to apply the math 

concepts, not to write robust numerical code. Instead, I’ll just show you how to get around this issue by reshaping 

the data we’re using. 

Based on our intuition about the data set, we can figure out some conservative bounds on the 
values of a and b, producing the line of best fit. The value a represents the depreciation, so the 
best value probably has a magnitude greater than 0.5 or 50 cents per mile. The b value 
represents the price of a Prius with zero miles on it and should be safely below $50,000.   

If we define new variables c and d by a = 0.5 · c and b = 50,000 · d, then when c and d have a 
magnitude less than one, a and b should have a magnitude less than 0.5 and 50,000, 
respectively. For values of a and b smaller than these values, the cost function goes no higher 
than 1013. If we divide the cost function result by 1013 and express it in terms of c and d, we 
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have a new version of the cost function whose inputs and outputs all have absolute value 
between zero and one: 

def scaled_cost_function(c,d): 
    return coefficient_cost(0.5*c,50000*d)/1e13 

If we find the values of c and d that minimize this scaled cost function, we can find the a and b 
values minimizing the original function, using the facts that a = 0.5 · c and b = 50,000 · d. 

This is a somewhat back-of-the-envelope approach, and there are more scientific ways to scale 
data to make it more numerically mangeable, one of which we’ll see in chapter 15. If you want 
to learn more, the usual process is called feature scaling in machine learning literature. For now, 
we’ve got what we need—a function we can plug into the gradient descent algorithm. 

14.3.2 Finding and plotting the line of best fit 

The function we’re going to optimize is scaled_cost_function, and we can expect the minimum 
to occur at a point (c, d), where |c| < 1 and |d| < 1. Because the optimal c and d are reasonably 
close to the origin, we can start the gradient descent at (0,0). The following code finds the 
minimum, although it may take a while to run, depending on what kind of machine you’re using: 

c,d = gradient_descent(scaled_cost_function,0,0) 

When it runs, it finds the following values for c and d: 

>>> (c,d) 
(-0.12111901781176426, 0.31495422888049895) 

To recover a and b, we need to multiply by the respective factors: 

>>> a = 0.5*c 
>>> b = 50000*d 
>>> (a,b) 
(-0.06055950890588213, 15747.711444024948) 

And, at last, we have our coefficients that we’ve been looking for! Rounding, we can say that 
the price function 

p(x) = -0.0606 ∙ x + 15,700 

is the linear function that (approximately) minimizes the sum squared error over the whole data 
set of cars. It implies that the price of a Toyota Prius with zero miles on it is, on average, 
$15,700, and that Priuses depreciate at an average rate of just over 6 cents per mile. Figure 
14.19 shows what the line looks like on a graph. 
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Figure 14.19: The line of best fit for the car price data 

This looks at least as good as the other linear functions p1(x), p2(x), and p3(x) that we tried, if 
not better. We can be sure that it’s a better fit to our data as measured by the cost function: 

>>> coefficient_cost(a,b) 
14536218169.403479 

Having automatically found a line of best fit that minimizes the cost function, we can say that 
our algorithm “learned” how to value Priuses based on their mileage, and we achieved the main 
goal of this chapter. 

There are a number of ways to compute linear regression to get this line of best fit, including a 
number of optimized Python libraries. Regardless of the methodology, they should get you to 
the same linear function that minimizes the sum of the squared error. I picked this specific 
methodology using gradient descent, both because it is a great application of a number of 
concepts we covered in part 1 and part 2, and also because it is highly generalizable. In the last 
section, I’ll show you one more application of gradient descent for regression, and we’ll make 
use of gradient descent and regression in the next two chapters as well. 

14.3.3 Exercises 

 
Exercise 14.6: Use gradient descent to find the linear function that best fits the test data. Your resulting function should 
be close to 2x + 0, but not exactly, because the data was randomly generated around that line. 
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Solution: First, we need to write a function that computes the cost of f(x) = ax + b relative to the test data in terms of 
the coefficients a and b: 
def test_data_linear_cost(a,b): 

    def f(x): 

        return a*x+b 

    return sum_squared_error(f,test_data) 

The values of a and b that minimize this function give us the linear function of best fit. We expect a and b to be close to 
2 and 0, respectively, so we can plot a heat map around those points to understand the function we’re minimizing: 
scalar_field_heatmap(test_data_linear_cost,-0,4,-2,2) 

 
The cost of ax + b relative to the test data as a function of a and b 
It looks like there’s a minimum to this cost function in the vicinity of (a, b) = (2,0), as expected. Using gradient descent 
to minimize this function, we can find the exact values: 
>>> gradient_descent(test_data_linear_cost,1,1) 

(2.103718204728344, 0.0021207385859157535) 
This means the line of best fit to the test data is approximately 2.10372 · x + 0.00212. 
 

14.4 Fitting a nonlinear function 
In the work we’ve done so far, there was no step that required the price function p(x) to be 
linear. A linear function was a good choice because it was simple, but we can apply the same 
method with any function of one variable defined by two constants. As an example, let’s find 
the exponential function of best fit having the form p(x) = qerx and minimizing the sum of the 
squared error relative to the car data. In this equation, e is the special constant 2.71828 . . ., 
and we’ll find the values of q and r that give us the best fit. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

14.4.1 Understanding the behavior of exponential functions 

In case it’s been a while since you’ve worked with exponential functions, let’s do a quick review 
of how they work. You can recognize a function f(x) as exponential when the argument x is in 
an exponent. For instance, f(x) = 2x is an exponential function, while f(x) = x2 is not. In fact, 
f(x) = 2x is one of the most familiar exponential functions. The value of 2x at each whole number 
of x is 2 multiplied by itself x times. Table 14.1 gives us some values of 2x. 

Table 14.1: Values of the familiar exponential function 2x 

x 0 1 2 3 4 5 6 7 8 9 

2x 1 2 4 8 16 32 64 128 256 512 

The number raised to the x power is called the base, so in the case of 2x, the base is 2. If the 
base is greater than one, the function increases as x increases, but if it is less than one, it 
decreases as x increases. For instance, in (½)x, each whole number value is half the previous 
as shown in table 14.2. 

Table 14.2: Values of the decreasing exponential function (½)x 

x 0 1 2 3 4 5 6 7 8 9 

(½)x 1 0.5 0.25 0.125 ~0.06 ~0.03 ~0.015 ~0.008 ~0.004 ~0.002 

This is called an exponential decay, and it’s more like what we want for our car depreciation 
model. An exponential decay means that the value of the function decreases by the same ratio 
over every x interval of a fixed size. Once we have our model, it can tell us that a Prius loses 
half its value every 50,000 miles, implying that it’s worth is ¼ of its original price at 100,000 
miles, and so on. 

Intuitively, this could be a better way to model depreciation. Toyotas, which are reliable cars 
that last a long time, retain some value as long as they are driveable. Our linear model, by 
comparison, suggests that their value becomes negative after a long time (figure 14.20). 
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Figure 14.20: A linear model predicts negative values for Priuses, as compared with an exponential model that 
shows a positive value at any mileage. 

The form of exponential function we can use is p(x) = qerx, where e = 2.71828 . . . is the fixed 
base, and r and q are the coefficients we can adjust. (It might seem arbitrary or even 
inconvenient to use the base e, but ex is the standard exponential function, so it’s worth getting 
used to.) In the case of exponential decay, the value of r is negative. Because er·0 = e0 = 1, we 
have p(0) = qer·0 = q, so q still models the price of the Prius with zero miles. The constant r 
decides the rate of depreciation. 

14.4.2 Finding the exponential function of best fit 

With the formula p(x) = qerx in mind, we can use our methodology from the previous sections 
to find the exponential function of best fit. The first step is to write a function that takes the 
coefficients q and r and returns the cost of the corresponding function: 

def exp_coefficient_cost(q,r): 
    def f(x): 
        return q*exp(r*x) #<1> 
    return sum_squared_error(f,prius_mileage_price) 

#1 Python’s exp function computes the exponential function ex. 

The next thing we need to do is choose a reasonable range for the coefficients q and r, which 
set the starting price and the depreciation rate, respectively. For q, we expect it to be close to 
the value of b from our linear model because both q and b represent the price of the car with 
zero miles on it. I’ll use a range from $0 to $30,000 to be safe.   

The value of r, which controls the depreciation rate, is a bit trickier to understand and set limits 
on. The equation p(x) = qerx with a negative r value implies that every time x increases by -
1/r units, the price decreases by a factor of e, meaning it is multiplied by 1/e or about 0.36. 
(I’ve added an exercise at the end of the section to help you convince yourself of this!) 
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To be conservative, let’s say a car is reduced in price by a factor of 1/e, or to 36% of its original 
value, after 10,000 miles at the earliest. That would give us r = 10-4. A smaller r value would 
mean a slower rate of depreciation. These benchmark magnitudes show us how to rescale the 
function, and if we divide by 1011, the cost values stay small as well. Here’s the implementation 
of the scaled cost function, and figure 14.21 shows a heat map of its output: 

def scaled_exp_coefficient_cost(s,t): 
    return exp_coefficient_cost(30000*s,1e-4*t) / 1e11 
 
scalar_field_heatmap(scaled_exp_coefficient_cost,0,1,-1,0) 

 
Figure 14.21: Cost as a function of the rescaled values of q and r, called s and t, respectively 

The dark region at the top of the heatmap in figure 14.21 shows that the lowest cost occurs at 
a small value of t and a value of s somewhere in the middle of the range 0 to 1. We’re ready to 
plug the scaled cost function into the gradient descent algorithm. The outputs of the gradient 
descent function are the s and t values minimizing the cost function, and we can undo the scaling 
to get q and r: 

>>> s,t = gradient_descent(scaled_exp_coefficient_cost,0,0) 
>>> (s,t) 
(0.6235404892859356, -0.07686877731125034) 
>>> q,r = 30000*s,1e-4*t 
>>> (q,r) 
(18706.214678578068, -7.686877731125035e-06) 

This implies that the exponential function that best predicts the price of a Prius in terms of its 
mileage is approximately: 

p(x) = 18,700 · e-0.00000768 · x 

Figure 14.22 shows the graph with the actual price data. 
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Figure 14.22: The exponential function of best fit for a Prius and its mileage 

You could argue that this model is even better than our linear model because it produces a lower 
sum squared error, meaning it fits the data (slightly) better according to the cost function: 

>>> exp_coefficient_cost(q,r) 
14071654468.28084 

Using a nonlinear function like an exponential function is just one of the many variations on this 
regression technique. We could use other nonlinear functions, functions defined by more than 
two constants or data fit in more than 2 dimensions. In the next two chapters, we’ll continue to 
use cost functions to measure the quality of fit for regression models and then use gradient 
descent to make the fit as good as possible. 

14.4.3 Exercises 

 
Exercise 14.7: Confirm by choosing a sample value of r that e-rx decreases by a factor of e every time x increases by 1/r 
units. 
Solution: Let’s take r = 3, so our test function is e-3x. We want to confirm that this function decreases by a factor of e 
every time x increases by ⅓ units. Defining the function in Python as follows: 
def test(x): 

    return exp(-3*x) 

we can see that it starts at a value of 1 at x = 0 and decreases by a factor of e for every ⅓ we add to x: 
>>> test(0) 

1.0 
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>>> from math import e 

>>> test(1/3), test(0)/e 

(0.36787944117144233, 0.36787944117144233) 

>>> test(2/3), test(1/3)/e 

(0.1353352832366127, 0.1353352832366127) 

>>> test(1), test(2/3)/e 

(0.049787068367863944, 0.04978706836786395) 

In each of these cases, adding ⅓ to the input of test yields the same result as dividing the previous result by e. 
 

 
Exercise 14.8: According to the exponential function of best fit, what percentage of the value of a Prius is lost every 
10,000 miles? 
Solution: The price function is p(x) = 18,700 · e-0.00000768 · x, where the value q = $18,700, which represents the initial 
price and not how fast the price is decreasing. We can focus on the term erx = e-0.00000768 · x and see how much it 
changes over 10,000 miles. For x = 0, the value of this expression is 1, and for x = 10,000, the value is  
>>> exp(r * 10000) 

0.9422186306357088 

This means that after 10,000 miles, the Prius is worth only 94.2% of its original price, a decrease of 5.8%. Given how 
the exponential function behaves, this will be the case over any 10,000-mile increase in the mileage. 
 

 
Exercise 14.9: Asserting that the retail price (the price at zero miles) is $25,000, what is the exponential function that 
best fits the data? In other words, fixing q = 25,000, what is the value of r yielding the best fit for qerx? 
Solution: We can write a separate function that gives the cost of the exponential function in terms of the single 
unknown coefficient r: 
def exponential_cost2(r): 

    def f(x): 

        return 25000 * exp(r*x) 

    return sum_squared_error(f,prius_mileage_price) 

The following plot confirms that there’s a value of r between -10-4 and 0, which minimizes the cost function: 
plot_function(exponential_cost2,-1e-4,0) 
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It looks like an approximate value of r = -10-5 minimizes the cost function. To automatically minimize this function, we 
need to write a one-dimensional version of the gradient descent or use another minimization algorithm. You can try that 
approach if you like, but because there’s only one parameter, we can simply guess and check to see that r = -1.12 · 10-5 
is approximately the r value yielding the minimum cost. This implies the best fit function is p(x) = 25,000 · e-0.0000112 · x. 
Here’s the graph of the new exponential fit, plotted with the raw price data: 
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14.5 Summary 
• Regression is the process of finding a model to describe the relationship between various 

data sets. In this chapter, we use linear regression to approximate the price of a car from 
its mileage as a linear function. 

• For a set of many (x, y) data points, there is likely no line that passes through all of the 
points.  

• For a function f(x, y) modeling the data, you can measure how close it comes to the data 
by taking the distance between f(x) and y for the specified points (x, y). 

• A function measuring how well a model fits a data set is called a cost function. A 
commonly used cost function is the sum of squared distances from (x, y) points to the 
corresponding model value f(x). The function that best fits the data has the lowest cost 
function. 

• Considering linear functions of the form f(x), every pair of coefficients (a, b) defines a 
unique linear function. There is a 2D space of such pairs and, therefore, a 2D space of 
lines to explore. 

• Writing a function that takes a pair of coefficients (a, b) and computes the cost of ax + 
b gives a function taking a 2D point and returning a number. Minimizing this function 
gives the coefficients defining the line of best fit. 

• Whereas a linear function p(x) increases or decreases by a constant amount for constant 
changes in x, an exponential function decreases or increases by a constant ratio for 
constant changes in x.  

• To fit an exponential equation to data, you can follow the same procedure as for a linear 
equation: you need to find the pair (q, r) yielding an exponential function qerx minimizing 
the cost function. 
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Classifying data with logistic 

regression 

This chapter covers 

• Understanding classification problems and measuring classifiers 
• Finding decision boundaries to classify two kinds of data 
• Approximating classified data sets with logistic functions 
• Writing a cost function for logistic regression 
• Carrying out gradient descent to find a logistic function of best fit 

One of the most important classes of problems in machine learning is classification, which we’ll 
focus on in the last two chapters of this book. A classification problem is one where we’ve got 
one or more pieces of raw data, and we want to say what kind of object each one represents. 
For instance, we might want an algorithm to look at the data of all email messages entering our 
inbox and classify each one as an interesting message or as unwanted spam. As an even more 
impactful example, we could write a classification algorithm to analyze a data set of medical 
scans and decide whether they contain benign or malevolent tumors. 

We can build machine learning algorithms for classification where the more real data our 
algorithm sees, the more it learns, and the better it performs at the classification task. For 
instance, every time an email user flags an email as spam or a radiologist identifies a malignant 
tumor, this data can be passed back to the algorithm to improve its calibration. 

In this chapter, we look at the same simple data set as in the last chapter: mileages and prices 
of used cars. Instead of using data for a single model of car like in the last chapter, we’ll look at 
two car models: Toyota Priuses and BMW 5 series sedans. Based only on the numeric data of 
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the car’s mileage and price, and a reference data set of known examples, we want our algorithm 
to give us a yes or no answer as to whether the car is a BMW. As opposed to a regression model 
that takes in a number and produces another number, the classification model will take in a 
vector and produce a number between zero and one, representing the confidence that the vector 
represents a BMW instead of a Prius (figure 15.1). 

 
Figure 15.1: Our classifier takes a vector of two numbers, the mileage and price of a used car, and returns a 
number representing its confidence that the car is a BMW. 

Even though classification has different inputs and outputs than regression, it turns out we can 
build our classifier using a type of regression. The algorithm we’ll implement in this chapter is 
called logistic regression. To train this algorithm, we start with a known data set of used car 
mileages and prices, labeled with a 1 if they are BMWs and a 0 if they are Priuses. Table 15.1 
shows sample points in this data set that we use to train our algorithm. 

Table 15.1: Sample data points used to train the algorithm 

Mileage (mi) Price ($) Is BMW? 

110,890.0 13,995.00 1 

94,133.0 13,982.00 1 

70,000.0 9,900.00 0 

46,778.0 14,599.00 1 

84,507.0 14,998.00 0 

. . . . . . . . . 

We want a function that takes the values in the first two columns and produces a result that is 
between zero and one, and hopefully, close to the correct choice of car. I’ll introduce you to a 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

special kind of function called a logistic function, which takes a pair of input numbers and 
produces a single output number that is always between zero and one. Our classification function 
is the logistic function that “best fits” the sample data we provide. 

Our classification function won’t always get the answer right, but then again neither would a 
human. BMW 5 series sedans are luxury cars, so we would expect to get a lower price for a Prius 
than a BMW with the same mileage. Defying our expectations, the last two rows of the data in 
table 5.1 show a Prius and BMW at roughly the same price, where the Prius has nearly twice the 
mileage of the BMW. Due to fluke examples like this, we won’t expect the logistic function to 
produce exactly one or zero for each BMW or Prius it sees. Rather it can return 0.51, which is 
the function's way of telling us it’s not sure, but the data is slightly more likely to represent a 
BMW. 

In the last chapter, we saw that the linear function we chose was determined by the two 
parameters a and b in the formula f(x) = ax + b. The logistic functions we’ll use in this chapter 
are parametrized by three parameters, so the task of logistic regression boils down to finding 
three numbers that get the logistic function as close as possible to the sample data provided. 
We’ll create a special cost function for the logistic function and find the three parameters that 
minimize the cost function using gradient descent. There’s a lot of steps here, but fortunately, 
they all parallel what we did in the last chapter, so it will be a useful review if you’re learning 
about regression for the first time. 

Coding the logistic regression algorithm to classify the cars is the meat of the chapter, but before 
doing that, we spend a bit more time getting you familiar with the process of classification. And 
before we train a computer to do the classification, let’s measure how well we can do the task. 
Then, once we build our logistic regression model, we can evaluate how well it does by 
comparison. 

15.1 Testing a classification function on real data 
Let’s see how well we can identify BMWs in our data set using a simple criterion. Namely, if a 
used car has a price above $25,000, it’s probably too expensive to be a Prius (after all, you can 
get a brand new Prius for near that amount). If the price is above $25,000, we’ll say that it is a 
BMW; otherwise, we’ll say that it’s a Prius. This classification is easy to build as a Python 
function: 

def bmw_finder(mileage,price): 
    if price > 25000: 
        return 1 
    else: 
        return 0 

The performance of this classifier might not be that great because it’s conceivable that BMWs 
with a lot of miles might sell for less than $25,000. But we don’t have to speculate: we can 
measure how well this classifier does on actual data. 
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In this section, we measure the performance of our algorithm by writing a function called 
test_classifier, which takes a classification function like bmw_finder as well as the data set 
to test. The data set is an array of tuples of mileages, prices, and a 1 or 0, indicating whether 
the car is a BMW or a Prius. Once we run the test_classifier function with real data, it returns 
a percent value, telling us how many of the cars it identifies correctly. At the end of the chapter 
when we’ve implemented logistic regression, we can instead pass in our logistic classification 
function to test_classifier and see its relative performance. 

15.1.1 Loading the car data 

It is easier to write the test_classifier function if we first load the car data. Rather than fuss 
with loading the data from CarGraph.com or from a flat file, I’ve made it easy for you by 
providing a Python file called cardata.py in the source code for the book. It contains two arrays 
of data: one for Priuses and one for BMWs. You can import the two arrays as follows: 

from car_data import bmws, priuses 

If you inspect either the BMW or Prius raw data in the car_data.py file, you’ll see that this file 
contains more data than we need. For now, we’re focusing on the mileage and price of each car, 
and we know what car it is, based on the list it belongs to. For instance, the BMW list begins 
like this: 

[('bmw', '5', 2013.0, 93404.0, 13999.0, 22.09145859494213), 
 ('bmw', '5', 2013.0, 110890.0, 13995.0, 22.216458611342592), 
 ('bmw', '5', 2013.0, 94133.0, 13982.0, 22.09145862741898), 
 ... 

Each tuple represents one car for sale, and the mileage and price are given by the fourth and 
fifth entries of the tuple, respectively. Within car_data.py, these are converted to Car objects, 
so we can write car.price instead of car[4], for example. We can make a list, called 
all_car_data, of the shape we want by pulling the desired entries from the BMW tuples and 
Prius tuples: 

all_car_data = [] 
for bmw in bmws: 
    all_car_data.append((bmw.mileage,bmw.price,1)) 
for prius in priuses: 
    all_car_data.append((prius.mileage,prius.price,0)) 

Once this is run, all_car_data is a Python list starting with the BMWs and ending with the 
Priuses, labeled with 1’s and 0’s, respectively: 

>>> all_car_data 
[(93404.0, 13999.0, 1), 
 (110890.0, 13995.0, 1), 
 (94133.0, 13982.0, 1), 
 (46778.0, 14599.0, 1), 
 .... 
(45000.0, 16900.0, 0), 
 (38000.0, 13500.0, 0), 
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 (71000.0, 12500.0, 0)] 

15.1.2 Testing the classification function 

With the data in a suitable format, we can now write the test_classifier function. The job of 
the bmw_finder is to look at the mileage and price of a car and tell us whether these represent 
a BMW. If the answer is yes, it returns a 1; otherwise, it returns a 0. It’s likely that bmw_finder 
will get some answers wrong. If it predicts that a car is a BMW (returning 1), but the car is 
actually a Prius, we’ll call that a false positive. If it predicts the car is a Prius (returning 0), but 
the car is actually a BMW, we’ll call that a false negative. If it correctly identifies a BMW or a 
Prius, we’ll call that a true positive or true negative, respectively. 

To test a classification function against the all_car_data data set, we need to run the 
classification function on each mileage and price in that list, and see whether the result of 1 or 
0 matches the given value. Here’s what that looks like in code: 

def test_classifier(classifier, data): 
    trues = 0 
    falses = 0 
    for mileage, price, is_bmw in data: 
        if classifier(mileage, price) == is_bmw: <#1> 
            trues += 1 
        else: 
            falses += 1 <#2> 
    return trues / (trues + falses) 

#1 Adds 1 to the trues counter if the classification is correct 
#2 Otherwise, adds 1 to the falses counter 

If we run this function with the bmw_finder classification function and the all_car_data data set, 
we see that it has 59% accuracy: 

>>> test_classifier(bmw_finder, all_car_data) 
0.59 

That’s not too bad; we got most of the answers right. But we’ll see we can do much better than 
this! In the next section, we plot the data set to understand what’s qualitatively wrong with the 
bmw_finder function. This helps us to see how we can improve the classification with our logistic 
classification function. 

15.1.3 Exercises 

 
Exercise 15.1: Update the test_classifier function to print the number of true positives, true negatives, false 
positives, and false negatives. Printing these for the bmw_finder classifier, what can you tell about the performance 
of the classifier? 
Solution: Rather than just keeping track of correct and incorrect predictions, we can track true and false positives and 
negatives separately: 
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def test_classifier(classifier, data, verbose=False): #1 

    true_positives = 0 #2 

    true_negatives = 0 

    false_positives = 0 

    false_negatives = 0 

    for mileage, price, is_bmw in data: 

        predicted = classifier(mileage,price) 

        if predicted and is_bmw: #3 

            true_positives += 1 

        elif predicted: 

            false_positives += 1 

        elif is_bmw: 

            false_negatives += 1 

        else: 

            true_negatives += 1 

             

    if verbose:         

        print("true positives %f" % true_positives) #4 

        print("true negatives %f" % true_negatives) 

        print("false positives %f" % false_positives) 

        print("false negatives %f" % false_negatives) 

     

    total = true_positives + true_negatives 

             

    return total / len(data) #5 

#1 Specifies whether to print the data (we might not want to print it every time). 
#2 We now have 4 counters to keep track of. 
#3 Depending on whether the car is a Prius or BMW and whether it’s classified correctly, increments 1 of 4 counters 
#4 Prints the results of each counter 
#5 Returns the number of correct classifications (true positives or negatives) divided by the length of the data set 
For the bmw_finder function, this prints the following text: 

true positives 18.000000 

true negatives 100.000000 

false positives 0.000000 

false negatives 82.000000 

Because the classifier returns no false positives, this tells us it always correctly 

identifies when the car is not a BMW. But we can’t be too proud of our function yet, 

because it says most of the cars are not BMWs, including many that are! In the next 

exercise, you can relax the constraint to get a higher overall success rate. 

 

 
Exercise 15.2: Find a way to update the bmw_finder function to improve its performance and use the 
test_classifier function to confirm that your improved function has better than 59% accuracy. 
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Solution: If you solved the last exercise, you saw that bmw_finder was too aggressive in saying that cars were not 
BMWs. We can lower the price threshold to $20,000 and see if it makes a difference: 
def bmw_finder2(mileage,price): 

    if price > 20000: 

        return 1 

    else: 

        return 0 
Indeed, by lowering this threshold, bmw_finder improved the success rate to 73.5%: 

>>> test_classifier(bmw_finder2, all_car_data) 

0.735 
 

15.2 Picturing a decision boundary 
Before we implement the logistic regression function, let’s look at one more way to measure our 
success at classification. Because the two numbers mileage and price define our used car data 
points, we can think of these as 2D vectors and plot them as points on a 2D plane. This plot 
gives us a better sense of where our classification function “draws the line” between BMWs and 
Priuses, and we can see how to improve it. It turns out that using our bmw_finder function is 
equivalent to drawing a literal line in the 2D plane, calling any point above the line a BMW and 
any point below it a Prius. 

In this section, we use Matplotlib to draw our plot and see where bmw_finder places the dividing 
line between BMWs and Priuses. This line is called the decision boundary, because what side of 
the line a point lies on, helps us decide what class it belongs to. After looking at the car data on 
a plot, we can figure out where to draw a better dividing line. This lets us define an improved 
version of the bmw_finder function, and we can measure exactly how much better it performs. 

15.2.1 Picturing the space of cars 

All of the cars in our data set have mileage and price values, but some of them represent BMWs 
and some represent Priuses, depending on whether they are labeled with a 1 or with a 0. To 
make our plot readable, we want to make a BMW and a Prius visually distinct on the scatter 
plot.  

The plot_data helper function in the source code takes the whole list of car data and 
automatically plots the BMWs with blue X’s and the Priuses with orange circles. Figure 15.2 
shows the plot. 

>>> plot_data(all_car_data) 
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Figure 15.2: A plot of price vs. mileage for all cars in the data set with each BMW represented by an X and each 
Prius represented with a circle 

In general, we can see that the BMWs are more expensive than the Priuses: most BMWs are 
higher on the price axis. This justifies our strategy of classifying the more expensive cars as 
BMWs. Specifically, we drew the line at a price of $25,000 (figure 15.3). On the plot, this line 
separates the top of the plot with more expensive cars from the bottom with less expensive 
cars. 

 
Figure 15.3: Shows the decision line with car data plotted 

This is our decision boundary. Every X above the line was correctly identified as a BMW, while 
every circle below the line was correctly identified as a Prius. All other points were classified 
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incorrectly. It’s clear that if we move this decision boundary, we can improve our accuracy. Let’s 
give it a try. 

15.2.2 Drawing a better decision boundary 

Based on the plot in figure 15.3, we could lower the line and correctly identify a few more BMWs, 
while not incorrectly identifying any Priuses. Figure 15.4 shows what the decision boundary 
looks like if we lower the cut-off price to $21,000. 

 
Figure 15.4: Lowering the decision boundary line appears to increase our accuracy. 

The $21,000 cut-off might be a good boundary for low-mileage cars, but the higher the mileage, 
the lower the threshold. For instance, it looks like most BMWs with 75,000 miles or more are 
below $21,000. To model this, we can make our cut-off price mileage dependent. Geometrically 
that means drawing a line that slopes downward (figure 15.5). 
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Figure 15.5: Using a downward-sloping decision boundary 

This line is given by the function p(x) = 21,000 − 0.07 · x, where p is price and x is mileage. 
There is nothing special about this equation, I just played around with the numbers until I plotted 
a line that looked reasonable. But it looks like it correctly identifies even more BMWs than before, 
with only a handful of false positives (Priuses incorrectly classified as BMWs). Rather than just 
eyeballing these decision boundaries, we can turn them into classifier functions and measure 
their performance. 

15.2.3 Implementing the classification function 

To turn this decision boundary into a classification function, we need to write a Python function 
that takes a car mileage and price, and returns one or zero depending on whether the point falls 
above or below the line. That means taking the given mileage, plugging it into the decision 
boundary function, p(x), to see what the threshold price is and comparing the result to the given 
price. This is what it looks like: 

def decision_boundary_classify(mileage,price): 
    if price > 21000 - 0.07 * mileage: 
        return 1 
    else: 
        return 0 

Testing this out, we can see it is much better than our first classifier: 80.5% of the cars are 
correctly classified by this line. Not bad! 

>>> test_classifier(decision_boundary_classify, all_car_data) 
0.805 

You might ask why we can’t just do a gradient descent on the parameters defining the decision 
boundary line. If 20,000 and 0.07 don’t give the most accurate decision boundary, maybe some 
pair of numbers near them do. This isn’t a crazy idea. When we implement logistic regression, 
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you’ll see that under the hood, it moves the decision boundary around using gradient descent 
until it finds the best one. 

There are two important reasons we’ll implement the more sophisticated logistic regression 
algorithm rather than doing a gradient descent on the parameters a and b of the decision 
boundary function, ax + b. The first is that if the decision boundary is close to vertical at any 
step in the gradient descent, the numbers a and b could get very large and cause numerical 
issues. The other is that there isn’t an obvious cost function. In the next section, we see how 
logistic regression takes care of both of these issues so we can search for the best decision 
boundary using gradient descent. 

15.2.4 Exercises 

 
Mini-project 15.3: What is the decision boundary of the form p = constant that gives the best classification accuracy on 
the test data set? 
Solution: The following function builds a classifier function for any specified, constant cut-off price. In other words, the 
resulting classifier returns true if the test car has price above the cutoff and false otherwise: 
def constant_price_classifier(cutoff_price): 

    def c(x,p): 

        if p > cutoff_price: 

            return 1 

        else: 

            return 0 

    return c 

The accuracy of this function can be measured by passing the resulting classifier to the test_classify function. 
Here’s a helper function to automate this check for any price we want to test as a cut-off value: 
def cutoff_accuracy(cutoff_price): 

    c = constant_price_classifier(cutoff_price) 

    return test_classifier(c,all_car_data) 
The best cut-off price is between two of the prices in our list. It’s sufficient to check each price and see if it is the best 
cut-off price. We can do that quickly in Python using the max function. The keyword argument key lets us choose what 
function we want to maximize by. In this case, we want to find the price in the list that is the best cut-off, so we can 
maximize by the cutoff_accuracy function. 

>>> max(all_prices,key=cutoff_accuracy) 

17998.0 
This tells us that according to our data set, $17,998 is the best price to use as a cut-off when deciding whether a car is 
a BMW 5 series or a Prius. It turns out to be quite accurate for our data set, with 79.5% accuracy: 
>>> test_classifier(constant_price_classifier(17998.0), all_car_data) 

0.795 
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15.3 Framing classification as a regression problem 
The way that we can reframe our classification task as a regression problem is to create a 
function that takes in the mileage and price of a car, and returns a number measuring how likely 
it is to be a BMW instead of a Prius. In this section, we implement a function called 
logistic_classifier that, from the outside, looks a lot like the classifiers we’ve built so far: 
it takes a mileage and a price, and outputs a number telling us whether the car is a BMW or a 
Prius. The only difference is that rather than outputting one or zero, it outputs a value between 
zero and one, telling us how likely it is that the car is a BMW. 

You can think of this number as the probability that the mileage and price describe a BMW, or 
more abstractly, you can think of it as giving the “BMWness” of the data point (figure 15.6). 
(Yes, that’s a made-up word, which I pronounce “bee-em-doubleyou-ness.” It means how much 
it looks like a BMW. Maybe we could call the antonym “Priusity.”) 

 
Figure 15.6: The concept of “BMWness” describes how much like a BMW a point in the plane is. 

To build the logistic classifier, we start with a guess of a good decision boundary line. Points 
above the line have high “BMWness,” meaning these are likely to be BMWs and the logistic 
function should return values close to one. Data points below the line have a low “BMWness,” 
meaning these are more likely to be Priuses and our function should return values close to zero. 
On the decision boundary, the “BMWness” value will be 0.5, meaning a data point there is 
equally as likely to be a BMW as it is to be a Prius. 

15.3.1 Scaling the raw car data 

There’s a chore we need to take care of at some point in the regression process, so we might 
as well take care of it now. As we discussed in the last chapter, the large values of mileage and 
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price can cause numerical errors, so it’s better to rescale them to a small, consistent size. We 
should be safe if we scale all of the mileages and the prices linearly to values between zero and 
one.  

We need to be able to scale and unscale each of mileage and price, so we need four functions 
in total. To make this a little bit less painful, I’ve written a helper function that takes a list of 
numbers and returns functions to scale and unscale these linearly, between zero and one, using 
the maximum and minimum values in the list. Applying this helper function to the whole list of 
mileages and of prices gives us the four functions we need: 

def make_scale(data): 
    min_val = min(data) #1 
    max_val = max(data) 
    def scale(x): #2 
        return (x-min_val) / (max_val - min_val) 
    def unscale(y): #3 
        return y * (max_val - min_val) + min_val 
    return scale, unscale #4 
 
price_scale, price_unscale =\  

    make_scale([x[1] for x in all_car_data]) #5 
mileage_scale, mileage_unscale =\ 

    make_scale([x[0] for x in all_car_data]) 

#1 The maximum and minimum provide the current range of the data set.   
#2 Puts the data point at the same fraction of the way between 0 and 1 as it was from min_val to max_val 
#3 Puts the scaled data point at the same fraction of the way from min_val to max_val as it was from 0 to 1 
#4 Returns the scale and unscale functions (closures, if you’re familiar with that term) to use when we want to scale or 

unscale members of this data set. 
#5 Returns two sets of functions, one for price and one for mileage 

We can now apply these scaling functions to every car data point in our list to get a scaled 
version of the data set: 

scaled_car_data = [(mileage_scale(mileage), price_scale(price), is_bmw)  
                    for mileage,price,is_bmw in all_car_data] 

The good news is that the plot looks the same (figure 15.7), except that the values on the axes 
are different. 
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Figure 15.7: The mileage and price data scaled so that all values are between zero and one. The plot looks the 
same as before, but our risk of numerical error has decreased. 

Because the geometry of the scaled data set is the same, it should give us confidence that a 
good decision boundary for this scaled data set translates to a good decision boundary for the 
original data set. 

15.3.2 Measuring the “BMWness” of a car 

Let’s start with a decision boundary that looks similar to the one from the last section. The 
function p(x) = 0.56 − 0.35 · x gives price at the decision boundary as a function of mileage. 
This is pretty close to the one I found by eyeballing in the last section, but it applies to the 
scaled data set instead (figure 15.8). 
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Figure 15.8: The decision boundary p(x) = 0.56 − 0.35 · x on the scaled data set 

We can still test classifiers on the scaled data set with our test_classifier function, we just 
need to take care to pass in the scaled data instead of the original. It turns out this decision 
boundary gives us a 78.5% accurate classification of the data. 

It also turns out that this decision boundary function can be rearranged to give a measure of 
the “BMWness” of a data point. To make our algebra easier, let’s write the decision boundary 
as:  

p = ax + b 

where p is price, x is still mileage, and a and b are the slope and intercept of the line (in this 
case, a = -0.35 and b = 0.56), respectively. Instead of thinking of this as a function, we can 
think of it as an equation satisfied by points (x, p) on the decision boundary. If we subtract ax 
+ b from both sides of the equation, we get another correct equation: 

p − ax − b = 0 

Every point (x, p) on the decision boundary satisfies this equation as well. In other words, the 
quantity p − ax − b is zero for every point on the decision boundary. 

Here’s the point of this algebra: the quantity p − ax − b is a measure of the “BMWness” of the 
point (x, p). If (x, p) is above the decision boundary, it means p is too big, relative to x, so p − 
ax − b > 0. If instead (x, p) is below the decision boundary, it means p is too small relative to 
x, then p − ax − b < 0. Otherwise, the expression p − ax − b is exactly zero, and the point is 
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right at the threshold of being interpreted as a Prius or a BMW. This might be a little bit abstract 
on the first read, so table 15.2 lists the three cases. 

Table 15.2: Summary of the possible cases 

(x, p) above decision 

boundary 

p − ax − b > 0 Likely to be a BMW 

(x, p) on decision 

boundary 

p − ax − b = 0 Could be either car model 

(x, p) below decision 

boundary 

p − ax − b < 0 Likely to be a Prius 

If you’re not convinced that p − ax − b is a measure of “BMWness” compatible with the decision 
boundary, an easier way to see this is to look at the heat map of f(x, p) = p − ax − b, together 
with the data (figure 15.9). When a = -0.35 and b = 0.56, the function is f(x, p) = p − 0.35 · x 
− 0.56. 

 
Figure 15.9: A plot of the heatmap and decision boundary showing that the bright values (positive “BMWness”) 
are above the decision boundary and dark values (negative “BMWness”) occur below the decision boundary. 

The function, f(x, p), almost meets our requirements. It takes a mileage and a price, and it 
outputs a number that is higher if the numbers are likely to represent a BMW, and lower if the 
values are likely to represent a Prius. The only thing missing is that the output numbers aren’t 
constrained to be between zero and one, and the cutoff is at a value of zero rather than at a 
value of 0.5 as desired. Fortunately, there’s a handy kind of mathematical helper function we 
can use to adjust the output. 
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15.3.3 Introducing the sigmoid function 

The function f(x, p) = p − ax − b is linear, but this is not a chapter on linear regression! The 
topic at hand is logistic regression, and to do logistic regression, you need to use a logistic 
function. The most basic logistic function is the one that follows, which is often called a sigmoid 
function: 

 
We can implement this function in Python with the exp function, which stands in for ex, where 
e = 2.71828… and is the constant we’ve used for exponential bases before: 

from math import exp 
def sigmoid(x): 
    return 1 / (1+exp(-x)) 

Figure 15.10 shows its graph. 

 
Figure 15.10: The graph of the sigmoid function σ(x) 

In the function, we use the Greek letter σ (sigma) because σ is the Greek version of the letter 
S, and the graph of σ(x) looks a bit like the letter S. Sometimes the words logistic function and 
sigmoid function are used interchangeably to mean a function like the one in figure 15.10, which 
smoothly ramps up from one value to another. In this chapter (and the next), when I refer to 
the sigmoid function, I’ll be talking about this specific function, σ(x).  

You don’t need to worry too much about how this function is defined, but you do need to 
understand the shape of the graph and what it means. This function sends any input number to 
a value between zero and one, with big negative numbers yielding results closer to zero, and 
big positive numbers yielding results closer to one. The result of σ(0) is 0.5. We can think of σ 
as translating the range from -∞ to ∞ to the more manageable range from zero to one. 
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15.3.4 Composing the sigmoid function with other functions 

Returning to our function f(x, p) = p − ax − b, we saw that it takes a mileage value and a price 
value and returns a number measuring how much the values look like a BMW rather than a 
Prius. This number could be large or positive or negative, and a value of zero indicates that it is 
on the boundary between being a BMW and being a Prius.  

What we want our function to return is a value between zero and one (with values close to zero 
and one), representing cars likely to be Priuses or BMWs, respectively, and a value of 0.5, 
representing a car that is equally likely to be either a Prius or a BMW. All we have to do to adjust 
the outputs of f(x, p) to be in the expected range is to pass through the sigmoid function σ(x) 
as shown in figure 15.11. That is, the function we want is σ(f(x, p)), where x and p are the 
mileage and price. 

 
Figure 15.11: Schematic diagram of composing the “BMWness” function f(x, p) with the sigmoid function σ(x) 

Let’s call the resulting function L(x, p), so in other words, L(x, p) = σ(f(x, p)). Implementing 
the function L(x, p) in Python and plotting its heatmap (figure 15.12), we can see that it 
increases in the same direction as f(x, p), but its values are different. 

 
Figure 15.12: The heatmaps look basically the same, but the values of the function are slightly different. 

Based on this picture, you might wonder why we went through the trouble of passing the 
“BMWness” function through the sigmoid. From this perspective, the functions look mostly the 
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same. However, if we plot their graphs as 2D surfaces in 3D (figure 15.13), you can see that 
the curvy shape of the sigmoid has an effect. 

 
Figure 15.13: While f(x, p) slopes upward linearly, L(x, p) curves up from a minimum value of 0 to a maximum 
value of 1. 

In fairness, I had to zoom out a bit in (x, p) space to make the curvature clear. The point is that 
if the type of car is indicated by a 0 or 1, the values of the function L(x, p) actually come close 
to these numbers, whereas the values of f(x, p) go off to positive and negative infinity!  

Figure 15.14 illustrates two exaggerated diagrams to show you what I mean. Remember that 
in our data set, scaled_car_data, we represented Priuses as triples of the form (mileage, price, 
0) and BMWs as triples of the form (mileage, price, 1). We can interpret these as points in 3D 
where the BMWs live in the plane z = 1 and Priuses live in the plane z = 0. Plotting 
scaled_car_data as a 3D scatter plot, you can see that a linear function can’t come close to 
many of the data points in the same way as a logistic function. 
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Figure 15.14: The graph of a linear function in 3D can’t come as close to the data points as the graph of a 
logistic function. 

With functions shaped like L(x, p), we can actually hope to fit the data, and we’ll see how to do 
that in the next section. 

15.3.5 Exercises 

 
Exercise 15.4: Find a function h(x) such that large positive values of x cause h(x) to be close to 0, large negative values 
of x cause h(x) to be close to 1, and h(3) = 0.5. 
Solution: The function y(x) = 3 − x has y(3) = 0 and it goes off to positive infinity when x is large and negative and off to 
negative infinity when x is large and positive. That means passing the result of y(x) into our sigmoid function gives us a 
function with the desired properties. Specifically, h(x) = σ(y(x)) = σ(3 − x) works, and its graph is shown here to convince 
you: 
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Mini-project 15.5: There is actually a lower bound on the result of f(x, p) because x and p are not allowed to be negative 
(negative mileages and prices don’t make sense, after all). Can you figure out the lowest value of f that a car could 
produce? 
Solution: According to the heatmap, the function f(x, p) gets smaller as we go down and to the left. The equation 
confirms this as well: if we decrease x or p, the value of f = p − ax − b = p + 0.35 · x − 0.56 gets smaller. Therefore, the 
minimum value of f(x, p) occurs at (x, p) = (0, 0), and it’s f(0, 0) = -0.056.  
 

15.4 Exploring possible logistic functions 
Let’s quickly retrace our steps. Plotting the mileages and prices of our set of Priuses and BMWs 
on a scatter plot, we could try to draw a line between these values, called a decision boundary, 
that defines a rule by which to distinguish a Prius from a BMW. We wrote our decision boundary 
as a line in the form p(x) = ax + b, and it looked like -0.35 and 0.56 were reasonable choices 
for a and b, giving us a classification that was about 80% correct. 

Rearranging this function, we found that f(x, p) = p − ax − b was a function taking a mileage 
and price (x, p) and returning a number that was greater than zero on the BMW side of the 
decision boundary and smaller than zero on the Prius side. On the decision boundary, f(x, p) 
returned zero, meaning a car would be equally likely to be a BMW or a Prius. Because we 
represent BMWs with a 1 and Priuses with a 0, we wanted a version of f(x, p) that returned 
values between zero and one, where 0.5 would represent a car equally likely to be a BMW or a 
Prius. Passing the result of f into a sigmoid function 𝜎𝜎, we got a new function L(x, p) = σ(f(x, 
p)), satisfying that requirement. 

But we don’t want the L(x, p) I made by eyeballing the best decision boundary—we want the 
L(x, p) that best fits the data. On our way to doing that, we’ll see that there are three parameters 
we can control to write a general logistic function that takes 2D vectors and returns numbers 
between zero and one, and also has a decision boundary L(x, p) = 0.5, which is a straight line. 
We’ll write a Python function, make_logistic(a,b,c), that takes in three parameters a, b, and 
c, and returns the logistic function they define. As we explored a 2D space of (a, b) pairs to 
choose a linear function in chapter 14, we’ll explore a 3D space of values (a, b, c) to define our 
logistic function (figure 15.15). 

 
Figure 15.15: Exploring a 3D space of parameter values (a, b, c) to define a function L(x, p) 
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Then we’ll create a cost function, much like the one we created for linear regression. The cost 
function, which we’ll call logistic_cost(a,b,c), takes the parameters a, b, and c, which define 
a logistic function and produce one number, measuring how far the logistic function is from our 
car data set. The logistic_cost function needs to be implemented in such a way that the lower 
its value, the better the predictions from the associated logistic function. 

15.4.1 Parameterizing logistic functions 

The first task is to find the general form of a logistic function L(x, p), whose values range from 
zero to one and whose decision boundary L(x, p) = 0.5 is a straight line. We got close to this in 
the last section, starting with the decision boundary p(x) = ax + b and reverse engineering a 
logistic function from that. The only problem is that a linear function of the form ax + b can’t 
represent any line in the plane. For instance, figure 15.16 shows a data set where a vertical 
decision boundary, x = 0.6, makes sense. Such a line can’t be represented in the form p = ax 
+ b, however.  

 
Figure 15.16: A vertical decision boundary might make sense, but it can’t be represented in the form p = ax + b. 

The general form of a line that does work is the one we met in chapter 7: ax + by = c. Because 
we’re calling our variables x and p, we’ll write ax + bp = c. Given an equation like this, the 
function z(x, p) = ax + bp − c is zero on the line with positive values on one side and negative 
values on the other. For us, the side of the line where z(x, p) is positive is the BMW side, and 
the side where z(x, p) is negative is the Prius side. 

Passing z(x, p) through the sigmoid function, we get a general logistic function L(x, p) = σ(z(x, 
p)), where L(x, p) = 0.5 on the line where z(x, p) = 0. In other words, the function L(x, p) = 
σ(ax + bp − c) is the general form we’re looking for. This is easy to translate to Python, giving 
us a function of a, b, and c that returns a corresponding logistic function L(x, p) = σ(ax + bp − 
c): 

def make_logistic(a,b,c): 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

    def l(x,p): 
        return sigmoid(a*x + b*p - c) 
    return l 

The next step is to come up with a measure of how close this function comes to our 
scaled_car_data dataset. 

15.4.2 Measuring the quality of fit for a logistic function 

For any BMW, the scaled_car_data list contains an entry of the form (x, p, 1), and for every 
Prius, it contains an entry of the form (x, p, 0), where x and p denote (scaled) mileage and price 
values, respectively. If we apply a logistic function, L(x, p), to the x and p values, we’ll get a 
result between zero and one.  

A simple way to measure the error or cost of the function L is to find how far off it is from the 
correct value, which is either zero or one. If you add up all of these errors, you’ll get a total 
value telling you how far the function L(x, p) comes from the data set. Here’s what that looks 
like in Python: 

def simple_logistic_cost(a,b,c): 
    l = make_logistic(a,b,c) 
    errors = [abs(is_bmw-l(x,p))  
              for x,p,is_bmw in scaled_car_data] 
    return sum(errors) 

This cost reports the error reasonably well, but it isn’t good enough to get our gradient descent 
to converge to a best value of a, b, and c. I won’t go into a full explanation of why this is, but 
I’ll try to quickly give you the general idea. 

Suppose we have two logistic functions, L1(x, p) and L2(x, p), and we want to compare the 
performance of both. Let’s say they both look at the same data point (x, p, 0), meaning a data 
point representing a Prius. Then let’s say L1(x, p) returns 0.99, which is greater than 0.5, so it 
predicts incorrectly that the car is a BMW. The error for this point is |0−0.99| = 0.99. If another 
logistic function, L2(x, p), predicts a value of 0.999, the model predicts with more certainty that 
the car is a BMW, and is even more wrong. That said, the error would be only |0−0.999| = 
0.999, which is not much different. 

It’s more appropriate to think of L1 as reporting a 99% chance the data point represents a BMW 
and a 1% chance that it represents a Prius, with L2 reporting a 99.9% chance it is a BMW and a 
0.1% chance it is a Prius. Instead of thinking of this as a 0.09% worse Prius prediction, we 
should really think of it as being ten times worse! We can, therefore, think of L2 as being ten 
times more wrong than L1. 

We want a cost function such that if L(x, p) is really sure of the wrong answer, then the cost of 
L is high. To get that, we can look at the difference between L(x, p) and the wrong answer, and 
pass it through a function that makes tiny values big. For instance, L1(x, p) returned 0.99 for a 
Prius, meaning it was 0.01 units from the wrong answer, while L2(x, p) returned 0.999 for a 
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Prius, meaning it was 0.001 units from the wrong answer. A good function to return big values 
from tiny ones is -log(x), where log is the special natural logarithm function. It’s not critical that 
you know what the -log function does, only that it returns big numbers for small inputs. Figure 
15.17 shows the plot of -log(x). 

 
Figure 15.17: The function -log(x) returns big values for small inputs, and -log(1) = 0. 

To familiarize yourself with -log(x), you can test it with some small inputs. For L1(x, p), which 
was 0.01 units from the wrong answer, we get a smaller cost than L2(x, p), which was 0.001 
units from the wrong answer: 

from math import log 
>>> -log(0.01) 
4.605170185988091 
>>> -log(0.001) 
6.907755278982137 

By comparison, if L(x, p) returns zero for a Prius, it would be giving the correct answer. That’s 
one unit away from the wrong answer, and -log(1) = 0, so there is zero cost for the right answer. 

Now we’re ready to implement the logistic_cost function that we set out to create. To find 
the cost for a given point, we calculate how close the given logistic function comes to the wrong 
answer and then take the negative logarithm of the result. The total cost is the sum of the cost 
at every data point in the scaled_car_data data set: 

def point_cost(l,x,p,is_bmw): #1 
    wrong = 1 - is_bmw 
    return -log(abs(wrong - l(x,p))) 
 
def logistic_cost(a,b,c): 
    l = make_logistic(a,b,c) 
    errors = [point_cost(l,x,p,is_bmw) #2  
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              for x,p,is_bmw in scaled_car_data] 
    return sum(errors) 

#1 Determines the cost of a single data point 
#2 The overall cost of the logistic function is the same as before, except that we use the new point_cost function for 

each data point instead of just the absolute value of the error. 

It turns out, we get good results if we try to minimize the logistic_cost function using gradient 
descent. But before we do that, let’s do a sanity check and confirm that logistic_cost returns 
lower values for a logistic function with an (obviously) better decision boundary. 

15.4.3 Testing different logistic functions 

Let’s try out two logistic functions with different decision boundaries, and confirm if one has an 
obviously better decision boundary than if it has a lower cost. As our two examples, let’s use p 
= 0.56 − 0.35 · x, my best-guess decision boundary, which is the same as 0.35 · x + 1 · p = 
0.56, and also an arbitrarily selected one, say x + p = 1. Clearly, the former is a better dividing 
line between the Priuses and the BMWs. 

In the source code, you’ll find a plot_line function to draw a line based on the values a, b, and 
c in the equation ax + by = c (and as an exercise at the end of the section, you can try 
implementing this function yourself). The respective values of (a, b, c) are (0.35, 1, 0.56) and 
(1, 1, 1). We can plot them alongside the scatter plot of car data (shown in figure 15.18) with 
these three lines: 

plot_data(scaled_car_data) 
plot_line(0.35,1,0.56) 
plot_line(1,1,1) 

 
Figure 15.18: The graphs of two decision boundary lines. One is clearly better than the other at separating 
Priuses from BMWs. 
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The corresponding logistic functions are σ(0.35 · x + p − 0.56) and σ(x + p − 1), and we expect 
the first one has a lower cost with respect to the data. We can confirm this with the 
logistic_cost function: 

>>> logistic_cost(0.35,1,0.56) 
130.92490748700456 
>>> logistic_cost(1,1,1) 
135.56446830870456 

As expected, the line x + p = 1 is a worse decision boundary, so the logistic function σ(x + p − 
1) has a higher cost. The first function σ(0.35 · x + p − 0.56) has a lower cost and a better fit. 
But is it the best fit? When we run gradient descent on the logistic_cost function in the next 
section, we’ll find out. 

15.4.4 Exercises 

 
Exercise 15.6: Implement the function plot_line(a,b,c) referenced in section 15.4.3 that plots the line ax + by = 
c, where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. 
Solution: Note that I used different names other than a, b, and c for the function arguments because c is a keyword 
argument that sets the color of the plotted line for Matplotlib’s plot function, which I commonly make use of: 

def plot_line(acoeff,bcoeff,ccoeff,**kwargs): 

    a,b,c = acoeff, bcoeff, ccoeff 

    if b == 0: 

        plt.plot([c/a,c/a],[0,1]) 

    else: 

        def y(x): 

            return (c-a*x)/b 

        plt.plot([0,1],[y(0),y(1)],**kwargs) 
 

 
Exercise 15.7: Use the formula for the sigmoid function 𝜎𝜎 to write an expanded formula for σ(ax + by − c). 
Solution: Given that  

 
we can write 
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Mini-project 15.8: What does the graph of k(x, y) = σ(x2 + y2 − 1) look like? What does the decision boundary look like, 
meaning the set of points where k(x, y) = 0.5? 
Solution: We know that σ(x2 + y2 − 1) = 0.5, wherever x2 + y2 − 1 = 0 or where x2 + y2 = 1. You can recognize the 
solutions to this equation as the points of distance one from the origin or a circle of radius 1. Inside the circle, the 
distance from the origin is smaller, so x2 + y2 < 1 and σ(x2 + y2) < 0.5, while outside the circle x2 + y2 > 1, so σ(x2 + y2 − 
1) > 0.5. The graph of this function approaches 1 as we move further away from the origin in any direction, while it 
decreases inside the circle to a minimum value of about 0.27 at the origin. Here’s the graph: 

 
A graph of σ(x2 + y2 − 1). Its value is less than 0.5 inside the circle of a radius of 1, and it increases to a value of 1 in 
every direction outside that circle. 
 

 
Mini-project 15.9: Two equations, 2x + y = 1 and 4x + 2y = 2, define the same line and, therefore, the same decision 
boundary. Are the logistic functions σ(2x + y − 1) and σ(4x + 2y − 2) the same? 
Solution: No, they aren’t the same function. The quantity 4x + 2y − 2 increases more rapidly with respect to increases in 
x and y, so the graph of the latter function is steeper: 
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The graph of the second logistic function is steeper than the graph of the first. 
 

 
Mini-project 15.10: Given a line ax + by = c, it’s not as easy to define what is above that line and what is below. Can you 
describe which side of the line the function z(x, y) = ax + by − c returns positive values? 
Solution: The line ax + by = c is the set of points where z(x, y) = ax + by − c = 0. As we saw for equations of this form in 
chapter 7, the graph of z(x, y) = ax + by − c is a plane, so it increases in one direction from the line and decreases in the 
other direction. The gradient of z(x, y) is ∇z(x, y) = (a, b), so z(x, y) increases most rapidly in the direction of the vector (a, 
b) and decreases most rapidly in the opposite direction (-a, -b). Both of these directions are perpendicular to the 
direction of the line. 
 

15.5 Finding the best logistic function 
We now have a straightforward minimization problem to solve: we’d like to find the values a, b, 
and c that make the logistic_cost function as small as possible. Then the corresponding 
function, L(x, p) = σ(ax + bp − c) will be the best fit to the data. We can use that resulting 
function to build a classifier by plugging in the mileage x and price p for an unknown car and 
labeling it as a BMW if L(x, p) > 0.5 and as a Prius, otherwise. We’ll call this classifier 
best_logistic_classifier(x,p), and we can pass it to test_classifier to see how well it 
does. 

The only major work we have to do here is upgrading our gradient_descent function. So far, 
we’ve only done gradient descent with functions that take 2D vectors and return numbers. The 
logistic_cost function takes a 3D vector (a, b, c) and outputs a number, so we need a new 
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version of gradient descent. Fortunately, we covered 3D analogies for every 2D vector operation 
we’ve used, so it won’t be too hard. 

15.5.1 Gradient descent in three dimensions 

Let’s look at our existing gradient calculation that we used to work with functions of two variables 
in chapters 12 and 14. The partial derivatives of a function f(x, y) at a point (x0, y0) are the 
derivatives with respect to x and y individually, while assuming the other variable is a constant. 
For instance, plugging in y0 into the second slot of f(x, y), we get f(x, y0), which we can treat as 
a function of x alone and take its ordinary derivative. Putting the two partial derivatives together 
as components of a 2D vector gives us the gradient: 

def approx_gradient(f,x0,y0,dx=1e-6): 
    partial_x = approx_derivative(lambda x:f(x,y0),x0,dx=dx) 
    partial_y = approx_derivative(lambda y:f(x0,y),y0,dx=dx) 
    return (partial_x,partial_y) 

The difference for a function of three variables is that there’s one other partial derivative we can 
take. If we look at f(x, y, z) at some point (x0, y0, z0), we can look at f(x, y0, z0), f(x0, y, z0), 
and f(x0, y0, z) as functions of x, y, and z, respectively, and take their ordinary derivatives to 
get three partial derivatives. Putting these three partial derivatives together in a vector, we get 
the 3D version of the gradient: 

def approx_gradient3(f,x0,y0,z0,dx=1e-6): 
    partial_x = approx_derivative(lambda x:f(x,y0,z0),x0,dx=dx) 
    partial_y = approx_derivative(lambda y:f(x0,y,z0),y0,dx=dx) 
    partial_z = approx_derivative(lambda z:f(x0,y0,z),z0,dx=dx) 
    return (partial_x,partial_y,partial_z) 

To do the gradient descent in 3D, the procedure is just as you’d expect: we start at some point 
in 3D, calculate the gradient, and step a small amount in that direction to arrive at a new point, 
where hopefully, the value of f(x, y, z) is smaller. As one additional enhancement, I’ve added a 
max_steps parameter so we can set a maximum number of steps to take during the gradient 
descent. With that parameter set to a reasonable limit, we won’t have to worry about our 
program stalling even if the algorithm doesn’t converge to a point within the tolerance. Here’s 
what the result looks like in Python: 

def gradient_descent3(f,xstart,ystart,zstart, 
                      tolerance=1e-6,max_steps=1000): 

    x = xstart 
    y = ystart 
    z = zstart 
    grad = approx_gradient3(f,x,y,z) 
    steps = 0 
    while length(grad) > tolerance and steps < max_steps: 
        x -= 0.01 * grad[0] 
        y -= 0.01 * grad[1] 
        z -= 0.01 * grad[2] 
        grad = approx_gradient3(f,x,y,z) 
        steps += 1 
    return x,y,z 
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All that remains is to plug in the logistic_cost function, and the gradient_descent3 function 
finds inputs that minimize it. 

15.5.2 Using gradient descent to find the best fit 

To be cautious, we can start by using a small number of max_steps, like 100: 

>>> gradient_descent3(logistic_cost,1,1,1,max_steps=100) 
(0.21114493546399946, 5.04543972557848, 2.1260122558655405) 

If we allow it to take 200 steps instead of 100, we see that it has further to go after all: 

>>> gradient_descent3(logistic_cost,1,1,1,max_steps=200) 
(0.884571531298388, 6.657543188981642, 2.955057286988365) 

Remember, these results are the parameters required to define the logistic function, but they 
are also the parameters (a, b, c) defining the decision boundary in the form ax + bp = c. If we 
run gradient descent for 100 steps, 200 steps, 300 steps, and so on, and plot the corresponding 
lines with plot_line, we can see the decision boundary converging as in figure 15.19. 

 
Figure 15.19: With more and more steps, the values of (a, b, c) returned by gradient descent seem to be settling 
on a clear decision boundary. 

Somewhere between 7,000 and 8,000 steps, the algorithm actually converges, meaning it finds 
a point where the length of the gradient is less than 10-6. Approximately speaking, that’s the 
minimum point we’re looking for: 

>>> gradient_descent3(logistic_cost,1,1,1,max_steps=8000) 
(3.7167003153580045, 11.422062409195114, 5.596878367305919) 

We can see what this decision boundary looks like relative to the one we’ve been using (figure 
15.20 shows the result): 

plot_data(scaled_car_data) 
plot_line(0.35,1,0.56) 
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plot_line(3.7167003153580045, 11.422062409195114, 5.596878367305919) 

 
Figure 15.20: Comparing our previous best-guess decision boundary to the one implied by the result of gradient 
descent 

This decision boundary isn’t too far off from our guess. The result of the logistic regression 
appears to have moved the decision boundary slightly downward from our guess, trading off a 
few false positives (Priuses that are now incorrectly above the line in figure 15.20) for a few 
more true positives (BMWs that are now correctly above the line). 

15.5.3 Testing an understanding the best logistic classifier 

We can easily plug these values for (a, b, c) into a logistic function and then use it to make a 
car classification function: 

def best_logistic_classifier(x,p): 
    l = make_logistic(3.7167003153580045, 11.422062409195114, 
5.596878367305919) 
    if l(x,p) > 0.5: 
        return 1 
    else: 
        return 0 

Plugging this function into the test_classifier function, we can see its accuracy rate on the 
test data set is about what we got from our best attempts, 80% on the dot: 

>>> test_classifier(best_logistic_classifier,scaled_car_data) 
0.8 

The decision boundaries are fairly close, so it makes sense that the performance is not too far 
off of our guess from section 15.2. That said, if what we had previously was close, why did the 
decision boundary converge so decisively where it did? 

It turns out logistic regression does more than simply find the optimal decision boundary. In 
fact, we saw a decision boundary early in the section that outperformed this best fit logistic 
classifier by 0.5%, so the logistic classifier doesn’t even maximize accuracy on the test data set. 
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Rather, logistic regression looks holistically at the data set and finds the model that is most 
likely to be accurate given all of the examples. Rather than moving the decision boundary slightly 
to grab one or two more percentage points of accuracy on the test set, the algorithm orients 
the decision boundary based on a holistic view of the data set. If our data set is representative, 
we can trust our logistic classifier to do well on data it hasn’t seen yet, not just the data in our 
training set. 

The other information that our logistic classifier has is an amount of certainty about every point 
it classifies. A classifier based only on a decision boundary is 100% certain that a point above 
that boundary is a BMW and that a point below that is a Prius. Our logistic classifier has a more 
nuanced view: we can interpret the values it returns between zero and one as a probability a 
car is a BMW rather than a Prius. For real-world applications, it can be valuable to know not only 
the best guess from your machine learning model, but also how trustworthy it considers itself 
to be. If we were classifying benign tumors from benevolent ones based on medical scans, we 
might act much differently if the algorithm told us it was 99% sure, as opposed to 51% sure, if 
a tumor was benevolent. 

The way certainty comes through in the shape of the classifier is the magnitude of the 
coefficients (a, b, c). For instance, you can see that the ratio between (a, b, c) in our guess of 
(0.35, 1, 0.56) is similar to the ratio in the optimal values of (3.717, 11.42, 5.597). The optimal 
values are approximately ten times bigger than our best guess. The biggest difference that 
causes this change is the steepness of the logistic function. The optimal logistic function is much 
more certain of the decision boundary than the first. It tells us that as soon as you cross the 
decision boundary, certainty of the result increases significantly as figure 15.21 shows. 
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Figure 15.21: The optimized logistic function is much steeper, meaning its certainty that a car is a BMW rather 
than a Prius increases rapidly as you cross the decision boundary. 

In the final chapter, we’ll continue to use sigmoid functions to produce certainties of results 
between zero and one as we implement classification using neural networks. 

15.5.4 Exercises 

 
Exercise 15.11: Modify the gradient_descent3 function to print the total number of steps taken before it returns its 
result. How many steps does the gradient descent take to converge for logistic_cost? 
Solution: All you need to do is add the line print(steps) right before gradient_descent3 returns its result: 

def gradient_descent3(f,xstart,ystart,zstart,tolerance=1e-6,max_steps=1000): 

    ... 

    print(steps) 

    return x,y,z 
Running the following gradient descent 
gradient_descent3(logistic_cost,1,1,1,max_steps=8000) 

the number printed is 7244, meaning the algorithm converges in 7,244 steps. 
 

 
Mini-project 15.12: Write an approx_gradient function that calculates the gradient of a function in any number of 
dimensions. Then write a gradient_descent function that works in any number of dimensions. To test your 
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gradient_descent on an n-dimensional function, you can try a function like f(x1, x2, … , xn) = (x1 − 1)2 + (x2 − 1)2 + … 
+ (xn − 1)2, where x1, x2, … , xn are the n input variables to the function f. The minimum of this function should be (1, 1, 
…, 1), an n-dimensional vector with the number 1 in every entry. 
Solution: Let’s model our vectors of arbitrary dimension as lists of numbers. To take partial derivatives in the ith 
coordinate at a vector v = (v1, v2, … , vn), we want to take the ordinary derivative of the ith coordinate xi. That is, we want 
to look at the function:  
f(v1, v2, …, vi − 1, xi, vi + 1, ..., vn)  
that is, in other words, every coordinate of v plugged in to f, except the ith entry, which is left as a variable xi. This gives 
us a function of a single variable xi, and its ordinary derivative is the ith partial derivative. The code for partial derivatives 
looks like this: 
def partial_derivative(f,i,v,**kwargs): 

    def cross_section(x): 

        arg = [(vj if j != i else x) for j,vj in enumerate(v)] 

        return f(*arg) 

    return approx_derivative(cross_section, v[i], **kwargs) 
Note that our coordinates are zero-indexed, and the dimension of input to f is inferred from the length of v. 
The rest of the work is easy by comparison. To build the gradient, we just take the n partial derivatives and put them in 
order in a list: 
def approx_gradient(f,v,dx=1e-6): 

    return [partial_derivative(f,i,v) for i in range(0,len(v))] 
To do the gradient descent, we replace all of the manipulations of named coordinate variables, like x, y, and z, with list 
operations on the list vector of coordinates called v: 
def gradient_descent(f,vstart,tolerance=1e-6,max_steps=1000): 

    v = vstart 

    grad = approx_gradient(f,v) 

    steps = 0 

    while length(grad) > tolerance and steps < max_steps: 

        v = [(vi - 0.01 * dvi) for vi,dvi in zip(v,grad)] 

        grad = approx_gradient(f,v) 

        steps += 1 

    return v 
To implement the suggested test function, we can write a generalized version of it that takes any number of inputs and 
returns the sum of their squared difference from one: 
def sum_squares(*v): 

    return sum([(x-1)**2 for x in v]) 
This function can’t be lower than zero because it’s a sum of squares, and a square cannot be less than zero. The value 
zero is obtained if every entry of the input vector v is one, so that’s the minimum. Our gradient descent confirms this 
(with only a small numerical error), so everything looks good! Note that because the starting vector v is 5D, all vectors in 
the computation are automatically 5D. 
>>> v = [2,2,2,2,2] 

>>> gradient_descent(sum_squares,v) 

[1.0000002235452137, 

 1.0000002235452137, 

 1.0000002235452137, 

 1.0000002235452137, 

 1.0000002235452137] 
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Mini-project 15.13: Attempt to run the gradient descent with the simple_logistic_cost cost function. What 
happens? 
Solution: It does not appear to converge. The values of a, b, and c continue increasing without bound even though the 
decision boundary stabilizes. This means as the gradient descent explores more and more logistic functions, these are 
staying oriented in the same direction but becoming infinitely steep. It is incentivized to become closer and closer to 
most of the points, while neglecting the ones it has already mislabeled. As I mentioned, this can be solved by penalizing 
the incorrect classifications for which the logistic function is the most confident, and our logistic_cost function 
does that well. 
 

15.6 Summary 
• Classification is a type of machine learning task where an algorithm is asked to look at 

unlabeled data points and identify each one as a member of a class. In our examples for 
this chapter, we looked at mileage and price data for used cars and wrote an algorithm 
to classify them either as 5 series BMWs or Toyota Priuses. 

• A simple way to classify vector data in 2D is to establish a decision boundary: that means 
drawing a literal boundary in the 2D space where your data lives, where points on one 
side of the boundary are classified in one class and points on the other side are classified 
in another. A simple decision boundary is a straight line. 

• If our decision boundary line takes the form ax + by = c, then the quantity ax + by − c 
is positive on one side of the line and negative on the other. We can interpret this value 
as a measure of how much the data point looks like a BMW. A positive value means that 
the data point looks like a BMW, while a negative value means that it looks more like a 
Prius. 

• The sigmoid function, defined as follows, takes numbers between -∞ and ∞ and crunches 
them into the finite interval from zero to one: 

 
• Composing the sigmoid with the function ax + by − c, we get a new function σ(ax + by 

− c) that also measures how much the data point looks like a BMW, but it only returns 
values between zero and one. This type of function is a logistic function in 2D. 

• The value between zero and one that a logistic classifier outputs can be interpreted as 
how confident it is that a data point belongs to one class versus another. For instance, 
return values of 0.51 or 0.99 would both indicate that the model thinks we’re looking at 
a BMW, but the latter would be a much more confident prediction. 

• With an appropriate cost function that penalizes confident, incorrect classifications, we 
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can use gradient descent to find the logistic function of best fit. This is the best logistic 
classifier according to the data set. 
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Training neural networks 

This chapter covers 

• Classifying images of handwritten digits as vector data 
• Designing a type of neural network called a multilayer perceptron 
• Evaluating a neural network as a vector transformation 
• Fitting a neural network to data with a cost function and gradient descent 
• Calculating partial derivatives for neural networks in backpropagation 

In the final chapter of this book, we combine almost everything you’ve learned so far to 
introduce one of the most famous machine learning tools used today: artificial neural networks. 
Artificial neural networks, or neural networks for short, are mathematical functions whose 
structure is loosely based on the structure of the human brain. These are called artificial to 
distinguish from the “organic” neural networks that exist in the brain. This might sound like a 
lofty and complex goal, but it’s all based on a simple metaphor for how the brain works. 

Before explaining the metaphor, I’ll preface this discussion by reminding you that I’m not a 
neurologist. The rough idea is that the brain is a big clump of interconnected cells called neurons 
and, when you think certain thoughts, what’s actually happening is electrical activity at specific 
neurons. You can see this electrical activity in the right kind of brain scan where various parts 
of the brain light up (figure 16.1). 
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Figure 16.1: Different kinds of brain activity cause different neurons to electrically activate, showing bright areas 
in a brain scan. 

As opposed to the billions of neurons in the human brain, the neural networks we build in Python 
have only a few dozen neurons, and the degree to which a specific neuron is turned on is 
represented by a single number called its activation. When a neuron activates in the brain or in 
our artificial neural network, it can cause adjacent, connected neurons to turn on as well. This 
allows one idea to lead to another, which we can loosely see as creative thinking.  

Mathematically, the activation of a neuron in our neural network is a function of the numerical 
activation values of neurons it is connected to. If a neuron connects to four others with the 
activation values a1, a2, a3, and a4, then its activation will be some mathematical function applied 
to those four values, say f(a1, a2, a3, a4).  

Figure 16.2 shows a schematic diagram with all of the neurons drawn as circles. I’ve suggestively 
shaded the neurons differently to indicate that they have different levels of activation, kind of 
like the brighter or darker areas of a brain scan.  

 
Figure 16.2: Picturing neuron activation as a mathematical function, where a1, a2, a3, and a4 are the activation 
values applied to the function f. 
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If each of a1, a2, a3, and a4 depend on the activation of other neurons, the value of a could 
depend on even more numbers. With more neurons and more connections, you can build an 
arbitrarily complicated mathematical function, and the goal is to model arbitrarily complicated 
ideas. 

The explanation I’ve just given you is a somewhat philosophical introduction to neural networks, 
and it’s definitely not enough for you to start coding. In this chapter, I show you, in detail, how 
to run with these ideas and build your own neural network. As in the last chapter, the problem 
we’ll solve with neural networks is classification. There are many steps in building a neural 
network and training it to perform well on classification, so before we dive in, I’ll lay out the 
plan. 

16.1 Classifying data with neural networks 
In this section, I focus on a classic application of neural networks: classifying images. 
Specifically, we’ll use low resolution images of handwritten digits (numbers from 0 to 9), and 
we want our neural network to identify which digit is shown in a given image. Figure 16.3 shows 
some example images for these digits. 

 
Figure 16.3: Low resolution images of some handwritten digits 

If you identified the digits in figure 16.3 as 7, 0, 3, and 5, then congratulations! Your organic 
neural network (that is, your brain) is well trained. Our goal here is to build an artificial neural 
network that looks at such an image and classifies it as one of ten possible digits, perhaps as 
well as a human could. 

In chapter 15, the classification problem amounted to looking at a 2D vector and classifying it 
in one of two classes. In this problem, we look at 8x8 pixel grayscale images, where each of the 
64 pixels is described by one number that tells us its brightness. Just as we treated images as 
vectors in chapter 6, we’ll treat the 64-pixel brightness values as a 64-dimensional vector. We 
want to put each 64-dimensional vector in one of ten classes, indicating which digit it represents. 
Thus, our classification function will have more inputs and more outputs than the one in chapter 
15. 

Concretely, the neural network classification function we’ll build in Python will look like a function 
with 64 inputs and 10 outputs. In other words, it’s a (non-linear!) vector transformation from 
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ℝ64 to ℝ10. The input numbers are the pixel darkness values, scaled from 0 to 1, and the ten 
output values represent how likely the image is to be any of the ten digits. The index of the 
largest output number is the answer. In the following case (shown by figure 16.4), an image of 
a 5 is passed in, and the neural network returns its largest value in the fifth slot, so it correctly 
identifies the digit in the image. 

 
Figure 16.4: How our Python neural network function classifies images of digits. 

The neural network function in the middle of figure 16.4 is nothing more than a mathematical 
function. Its structure will be more complex than the ones we’ve seen so far, and in fact, the 
formula defining it is too long to write on paper. Evaluating a neural network is more like carrying 
out an algorithm. I’ll show you how to do this and implement it in Python. 

Just as we tested many different logistic functions in the previous chapter, we could try many 
different neural networks and see which one has the best predictive accuracy. Once again, the 
systematic way to do this is a gradient descent. While a linear function is determined by the two 
constants a and b in the formula f(x) = ax + b, a neural network of a given shape can have 
thousands of constants determining how it behaves. That’s a lot of partial derivatives to take! 
Fortunately, due to the form of the functions connecting neurons in our neural network, there’s 
a shortcut algorithm for taking the gradient, which is called backpropagation. 

It’s possible to derive the backpropagation algorithm from scratch and implement it using only 
the math we’ve covered so far, but unfortunately, that’s too big of a project to fit in this book. 
Instead, I’ll show you how to use a famous Python library called scikit-learn (“sci” pronounced 
as in “science”) to do the gradient descent for us, so it automatically trains the neural network 
to predict as well as possible for our data set. Finally, I’ll leave you with a teaser of the math 
behind backpropagation. I hope this will be just the starting point for your prolific career in 
machine learning. 
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16.2 Classifying images of handwritten digits 
Before we start implementing our neural network, we need to prepare the data. The digit images 
I use are among the extensive, free test data that comes with the scikit-learn data. Once we 
download those, we need to convert them into 64-dimensional vectors with values scaled 
between zero and one. The data set also comes with the correct answers for each digit image, 
represented as Python integers from zero to nine. 

Then we build two Python functions to practice the classification. The first is a fake digit 
identification function called random_classifier, which takes 64 numbers representing an 
image and (randomly) outputs 10 numbers representing the certainty that the image represents 
each digit from 0 to 9. The second is a function called test_digit_classify, which takes a 
classifier and automatically plugs in every image in the data set, returning a count of how many 
correct answers come out. Because our random_classifier produces random results, it should 
only guess the right answer 10% of the time. This sets the stage for improvement when we 
replace it with a real neural network. 

16.2.1 Building the 64-dimensional image vectors 

If you’re working with the Anacondas Python distribution as described in appendix A, you should 
already have the scikit-learn library available as sklearn. If not, you can install it with pip. To 
open sklearn and import the digits data set, you need the following code: 

from sklearn import datasets 
digits = datasets.load_digits() 

Each entry of digits is a 2D NumPy array (a matrix), giving the pixel values of one image. For 
instance, digits.images[0] gives the pixel values of the first image in the data set, which is 
an 8-by-8 matrix of values: 

>>> digits.images[0] 
array([[ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.], 
       [ 0.,  0., 13., 15., 10., 15.,  5.,  0.], 
       [ 0.,  3., 15.,  2.,  0., 11.,  8.,  0.], 
       [ 0.,  4., 12.,  0.,  0.,  8.,  8.,  0.], 
       [ 0.,  5.,  8.,  0.,  0.,  9.,  8.,  0.], 
       [ 0.,  4., 11.,  0.,  1., 12.,  7.,  0.], 
       [ 0.,  2., 14.,  5., 10., 12.,  0.,  0.], 
       [ 0.,  0.,  6., 13., 10.,  0.,  0.,  0.]]) 

You can see that the range of grayscale values is limited. The matrix consists only of whole 
numbers from 0 to 15. 

Matplotlib has a useful built-in function called imshow, which shows the entries of a matrix as 
an image. With the correct grayscale specification, the zeroes in the matrix appear as white and 
the bigger non-zero values appear as darker shades of gray. For instance, figure 16.5 shows 
the first image in the data set, which looks like a zero, resulting from imshow: 

import matplotlib.pyplot as plt 
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plt.imshow(digits.images[0], cmap=plt.cm.gray_r) 

 
Figure 16.5: The first image in sklearn’s digit data set, which looks like a zero 

To emphasize once more how we’re going to think of this image as a 64-dimensional vector, 
figure 16.6 shows a version of the image with each of the 64-pixel brightness values overlaid 
on the corresponding pixels. 

 
Figure 16.6: An image from the digit data set with brightness values overlaid on each pixel. 
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To turn this 8-by-8 matrix of numbers into a single 64-entry vector, we can use a built-in NumPy 
function called np.matrix.flatten. This function builds a vector starting with the first row of 
the matrix, followed by the second row, and so on, giving us a vector representation of an image 
similar to the one we used in chapter 6. Flattening the first image matrix indeed gives us a 
vector with 64 entries: 

>>> import numpy as np 
>>> np.matrix.flatten(digits.images[0]) 
array([ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.,  0.,  0., 13., 15., 10., 
       15.,  5.,  0.,  0.,  3., 15.,  2.,  0., 11.,  8.,  0.,  0.,  4., 
       12.,  0.,  0.,  8.,  8.,  0.,  0.,  5.,  8.,  0.,  0.,  9.,  8., 
        0.,  0.,  4., 11.,  0.,  1., 12.,  7.,  0.,  0.,  2., 14.,  5., 
       10., 12.,  0.,  0.,  0.,  0.,  6., 13., 10.,  0.,  0.,  0.]) 

To keep our analysis numerically tidy, we’ll once again scale our data so that the values are 
between 0 and 1. Because all the pixel values for every entry in this data set are between 0 and 
15, we can scalar multiply these vectors by 1 / 15 to get scaled versions. NumPy overloads the 
* and / operators to automatically work as scalar multiplication (and division) of vectors, so we 
can simply type 

np.matrix.flatten(digits.images[0]) / 15 

and we’ll get a scaled result. Now we can build a sample digit classifier to plug these values into. 

16.2.2 Building a random digit classifier 

The input to the digit classifier is a 64-dimensional vector, like the ones we just constructed, 
and the output is a 10-dimensional vector with each entry value between 0 and 1. For our first 
example, the output vector entries can be randomly generated, but we interpret them as the 
classifier’s certainty that the image represents each of the ten digits. 

Because we’re okay with random outputs for now, this is easy to implement: NumPy has a 
function, np.random.rand, that produces an array of random numbers between 0 and 1 of a 
specified size. For instance, np.random.rand(10) gives us a NumPy array of 10 random 
numbers between 0 and 1. Our random_classifier function takes an input vector, ignores it, 
and returns a random vector: 

def random_classifier(input_vector): 
    return np.random.rand(10) 

To classify the first image in the data set, we can run the following: 

>>> v = np.matrix.flatten(digits.images[0]) / 15. 
>>> result = random_classifier(v) 
>>> result 
array([0.78426486, 0.42120868, 0.47890909, 0.53200335, 0.91508751, 
       0.1227552 , 0.73501115, 0.71711834, 0.38744159, 0.73556909]) 

The largest entry of this output is about 0.915, occurring at index 4. Returning this vector, our 
classifier tells us that there’s some chance that the image represents any of the digits and that 
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it is most likely a 4. To get the index of a maximum value programmatically, we can use the 
following Python code: 

>>> list(result).index(max(result)) 
4 

Here, max(result) finds the largest entry of the array, and list(result) treats the array as 
an ordinary Python list. Then we can use the built-in list index function to find the index of the 
maximum value. The return value of 4 is incorrect; we saw previously that the picture is a 0, 
and we can check the official result as well.  

The correct digit for each image is stored at the corresponding index in the digits.target 
array. For the image digits.images[0], the correct value is digits.target[0], which is zero 
as we expected: 

>>> digits.target[0] 
0 

Our random classifier predicted the image to be a 4 when in fact it was a 0. Because it is guessing 
at random, it should be wrong 90% of the time, and we can confirm this by testing it on a lot of 
test examples. 

16.2.3 Measuring performance of the digit classifier 

Now we’ll write the function test_digit_classify, which takes a classifier function and 
measures its performance on a large set of digit images. Any classifier function will have the 
same shape: it takes a 64-dimensional input vector and returns a 10-dimensional output vector. 
The test_digit_classify function goes through all of the test images and known correct 
answers and sees if the classifier produces the right answer: 

def test_digit_classify(classifier,test_count=1000): 
    correct = 0 #<1> 
    for img, target in zip(digits.images[:test_count], 
digits.target[:test_count]): #<2> 
        v = np.matrix.flatten(img) / 15. #<3> 
        output = classifier(v) #<4> 
        answer = list(output).index(max(output)) #<5> 
        if answer == target: 
            correct += 1 #<6> 
    return (correct/test_count) #<7> 

#1 Starts the counter of correct classifications at 0 
#2 Loops over pairs of images in the test set with corresponding targets, giving the correct answer for the digit 
#3 Flattens the image matrix into a 64D vector and scales it appropriately 
#4 Passes the image vector through the classifier to get a 10D result 
#5 Finds the index of the largest entry in this result, which is the classifier’s best guess 
#6 If this matches our answer, increments the counter 
#7 Returns the number of correct classifications as a fraction of the total number of test data points 
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We expect our random classifier to get about 10% of the answers right. Because it acts 
randomly, it might do better on some trials than others, but because we’re testing on so many 
images, the result should be somewhere close to 10% every time. Let’s give it a try: 

>>> test_digit_classify(random_classifier) 
0.107 

In this test, our random classifier did slightly better than expected at 10.7%. This isn’t too 
interesting on its own, but now we’ve got our data organized and a baseline example to beat so 
we can start building our neural network. 

16.2.4 Exercises 

 
Exercise 16.1: Suppose a digit classifier function outputs the following NumPy array. What digit has it concluded is in 
the image? 
array([5.00512567e-06, 3.94168539e-05, 5.57124430e-09, 9.31981207e-09, 

       9.98060276e-01, 9.10328786e-07, 1.56262695e-03, 1.82976466e-04, 

       1.48519455e-04, 2.54354113e-07]) 
Solution: The largest number in this array is 9.98060276e-01, or approximately 0.998, which appears fifth, or in index 
4. Therefore, this output says the image is classified as a 4. 
 

 
Mini-project 16.2: Find the average of all the images of 9’s in the data set in the same way we took averages of the 
images in chapter 6. Plot the resulting image. What does it look like? 
Solution: This code takes an integer i and averages the images in the data set that represent the digit i. Because the 
digit images are represented as NumPy arrays, which support addition and scalar multiplication, we can average them 
using the ordinary Python sum function and division operator: 

def average_img(i): 

    imgs = [img for img,target in zip(digits.images[1000:], digits.target[1000:]) if 

target==i] 

    return sum(imgs) / len(imgs) 

With this code, average_img(9) computes an 8-by-8 matrix representing the average of all the images of 9’s, and it 
looks like this: 
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Mini-project 16.3: Build a better classifier than the random one by finding the average image of each kind of digit in the 
test data set and comparing a target image with all of the averages. Specifically, return a vector of the dot products of 
the target image with each average digit image. 
Solution:  
avg_digits = [np.matrix.flatten(average_img(i)) for i in range(10)] 

def compare_to_avg(v): 

    return [np.dot(v,avg_digits[i]) for i in range(10)] 

Testing this classifier, we get 85% of the digits correct in the test data set. Not bad! 
>>> test_digit_classify(compare_to_avg) 

0.853 

 

16.3 Designing a neural network 
In this section, I show you how to think of a neural network as a mathematical function and 
how you can expect it to behave, depending on its structure. That sets us up for the next section, 
where we implement our first neural network as a Python function in order to classify digit 
images. 

For our image classification problem, our neural network has 64 input values and 10 output 
values, and requires hundreds of operations to evaluate. For that reason, in this section, I stick 
with a simpler neural network with three inputs and two outputs. This makes it possible to 
picture the whole network and walk through every step of its evaluation. Once we cover this, it 
will be easy to write the evaluation steps that work on a neural network of any size in general 
Python code. 
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16.3.1 Organizing neurons and connections 

As I described in the beginning of this chapter, the model for a neural network is a collection of 
neurons, where a given neuron activates, depending on how much its connected neurons 
activate. Mathematically, turning on a neuron is a function of the activations of the connected 
neurons. Depending on how many neurons are used, which neurons are connected, and the 
functions that connect them, the behavior of a neural network can be different. In this chapter, 
we’ll restrict our attention to one of the simplest useful kinds of neural networks—a multilayer 
perceptron. 

A multilayer perceptron, abbreviated MLP, consists of several columns of neurons called layers, 
arranged from left to right. Each neuron’s activation is a function of the activations in the 
previous layer, which is the layer immediately to the left. The leftmost layer depends on no 
other neurons, and its activation is based on training data. Figure 16.7 provides a schematic of 
a four-layer MLP. 

 
Figure 16.7: A schematic of a multilayer perceptron (MLP), consisting of several layers of neurons 

In figure 16.7, each circle is a neuron, and lines between the circles show connected neurons. 
Turning on a neuron depends only on the activations of neurons from the previous layer, and it 
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influences the activations of every neuron in the next layer. I arbitrarily chose the number of 
neurons in each layer, and in this particular schematic, the layers consist of three, four, three, 
and two neurons, respectively. 

Because there are 12 total neurons, there are 12 total activation values. Often there can be 
many more neurons (we’ll use 90 for digit classification), so we can’t give a letter variable name 
to every neuron. Instead, we represent all activations with the letter a and index them with 
superscripts and subscripts. The superscript indicates the layer, and the subscript indicates 
which neuron we’re talking about within the layer. For instance, 𝑎𝑎22 is a number representing the 
activation of the second neuron in the second layer. 

16.3.2 Data flow through a neural network 

To evaluate a neural network as a mathematical function, there are three basic steps, which I 
describe in terms of the activation values. I’ll walk through them conceptually and then I’ll show 
you the formulas. Remember, a neural network is just a function that takes an input vector and 
produces an output vector. The steps in between are just a recipe for getting to the output from 
the given input. Here’s the first step in the pipeline. 

STEP 1: SET THE INPUT LAYER ACTIVATIONS TO THE ENTRIES OF THE INPUT VECTOR 

The input layer is another word for the first or leftmost layer. The network in figure 16.7 has 
three neurons in the input layer, so this neural network can take 3D vectors as inputs. If our 
input vector is (0.3, 0.9, 0.5), then we can perform this first step by setting 𝑎𝑎10 = 0.3, 𝑎𝑎20 = 0.9, 
and 𝑎𝑎30 = 0.5. That fills in 3 of the 12 total neurons in the network (figure 16.8). 
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Figure 16.8: Setting the input layer activations to the entries of the input vector (left) 

Each activation value in layer one is a function of the activations in layer zero. Now we have 
enough information to calculate them, so that’s step 2. 

STEP 2: CALCULATE EACH ACTIVATION IN THE NEXT LAYER AS A FUNCTION OF ALL OF THE 
ACTIVATIONS IN THE INPUT LAYER 

This step is the meat of the calculation, and I’ll return to it once I’ve gone through all of the 
steps conceptually. The important thing to know for now is that each activation in the next layer 
is usually given by a distinct function of the previous layer activations. Say we want to calculate 
a1

1. This activation is some function of 𝑎𝑎10, 𝑎𝑎20, and 𝑎𝑎30, which we can simply write as 𝑎𝑎11 = f(𝑎𝑎10, 𝑎𝑎20, 
𝑎𝑎30) for now. Suppose, for instance, we calculate f(0.3, 0.9, 0.5) and the answer is 0.6. Then the 
value of 𝑎𝑎11 becomes 0.6 in our calculation (figure 16.9). 
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Figure 16.9: Calculating an activation in layer one as some function of the activations in layer zero 

When we calculate the next activation in layer one, 𝑎𝑎21, it is also a function of the input activations 
𝑎𝑎10, 𝑎𝑎20, and 𝑎𝑎30, but in general, it is a different function, say 𝑎𝑎21 = g(𝑎𝑎10, 𝑎𝑎20, 𝑎𝑎30). The result still 
depends on the same inputs, but as a different function, it’s likely we’ll get a different result. 
Let’s say, g(0.3, 0.9, 0.5) = 0.1, then that’s our value for 𝑎𝑎21 (figure 16.10). 

 
Figure 16.10: Calculating another activation in layer one with another function of the input layer activations 

I used f and g because those are simple placeholder function names. There are two more distinct 
functions for 𝑎𝑎31 and 𝑎𝑎41 in terms of the input layer. I won’t keep naming these functions, because 
we’ll quickly run out of letters, but the important point is that each activation has a special 
function of the previous layer activations. Once we calculate all of the activations in layer one, 
we’ve 7 of the 12 total activations filled in. The numbers here are still made up, but the result 
might look something like that shown in figure 16.11. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 16.11: Two layers of activations for our multilayer perceptron (MLP) calculated. 

From here on out, we repeat the process until we’ve calculated the activation of every neuron 
in the network, which is step 3. 

STEP 3: REPEAT THIS PROCESS, CALCULATING THE ACTIVATIONS OF EACH SUBSEQUENT LAYER 
BASED ON THE ACTIVATIONS IN THE PRECEDING LAYER 

We start by calculating 𝑎𝑎12 as a function of the layer one activations, 𝑎𝑎11, 𝑎𝑎21, 𝑎𝑎31, and 𝑎𝑎41. Then we 
move on to 𝑎𝑎22 and 𝑎𝑎32, which are given by their own functions. Finally, we calculate 𝑎𝑎13 and 𝑎𝑎23 as 
their own functions of the layer two activations. At this point, we have an activation for every 
neuron in the network (figure 16.12). 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

 
Figure 16.12: An example of an MLP with all activations calculated. 

At this point, our calculation is done. We have activations calculated for the middle layers, called 
hidden layers, and the final layer, called the output layer. All we need to do now is to read off 
the activations of the output layer to get our result and that’s step 4. 

STEP 4: RETURN A VECTOR WHOSE ENTRIES ARE THE ACTIVATIONS OF THE OUTPUT LAYER 

In this case, the vector is (0.2, 0.9), so evaluating our neural network as a function of the input 
vector (0.3, 0.9, 0.5) produces the output vector (0.2, 0.9). 

That’s all there is to it! The only thing I didn’t cover is how to calculate individual activations, 
and these are what make the neural network distinct. Every neuron, except for those in the 
input layer, has its own function, and the parameters defining those functions are the numbers 
we’ll tweak to make the neural network do what we want.  

16.3.3 Calculating activations 

The good news is that we’ll use a familiar form of function to calculate the activations in one 
layer as a function of those in the previous layer: logistic functions. The tricky part is that our 
neural network has 9 neurons outside the input layer, so there are 9 distinct functions to keep 
track of. What’s more, there are several constants to determine the behavior of each logistic 
function. Most of the work will be keeping track of all of these constants. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

To focus on a specific example, we noted that in our sample MLP, we have the activation 
𝑎𝑎11 depend on the three input layer activations: 𝑎𝑎10 , 𝑎𝑎20 , and 𝑎𝑎30 . The function giving 𝑎𝑎11  is a linear 
function of these inputs (including a constant) passed into a sigmoid function. There are four 
free parameters here, which I name A, B, C, and D for the moment (figure 16.13). 

 
Figure 16.13: The general form of the function to calculate 𝑎𝑎11 as a function of the input layer activations 

We need to tune the variables A, B, C, and D to make 𝑎𝑎11 respond appropriately to inputs. In 
chapter 15, we thought of logistic functions as taking in several numbers and making a yes-or-
no decision about them, reporting the answer as a certainty of “yes” from zero to one. In that 
sense, you can think of the neurons in the middle of the network as breaking the overall 
classification problem into smaller yes-or-no classifications. 

For every connection in the network, there is a constant telling us how strongly the input neuron 
activation affects the output neuron activation. In this case, the constant A tells us how strongly 
𝑎𝑎10 affects 𝑎𝑎11, while B and C tell us how strongly 𝑎𝑎20 and 𝑎𝑎30 affect 𝑎𝑎11, respectively. These constants 
are called weights for the neural network, and there is one weight for every line segment in the 
neural network general diagram used throughout this chapter. 

The constant D doesn’t affect the connection, but instead, independently increases or decreases 
the value of 𝑎𝑎11, which is not dependent on an input activation. This is appropriately named the 
bias for the neuron because it measures the inclination to make a decision without any input. 
The word bias sometimes comes with a negative connotation, but it’s an important part of any 
decision-making process: it helps avoid outlier decisions unless there is strong evidence. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

As messy as it might look, we need to index these weights and biases rather than giving them 
names like A, B, C, and D. We’ll write the weights in the form 𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙 , where l is the layer on the 
right of the connection, i is the index of the previous neuron in layer l − 1, and j is the index of 
the target neuron in layer l. For instance, the weight A, which impacts the first neuron of layer 
one based on the value of the first neuron of layer zero is denoted by 𝑤𝑤111 . The weight connecting 
the second neuron of layer three to the first neuron of the previous layer is 𝑤𝑤21

3  (figure 16.14). 

 
Figure 16.14: Showing the connections corresponding to weights 𝑤𝑤111  and 𝑤𝑤21

3  

The biases correspond to neurons, not pairs of neurons, so there is one bias for each neuron: 
𝑏𝑏𝑖𝑖𝑙𝑙 for the bias of the jth neuron in the lth layer. In terms of these naming conventions, we could 
write the formula for 𝑎𝑎11 as:  

 
Or the formula for 𝑎𝑎32 as:  

 
As you can see, computing activations to evaluate an MLP is not difficult, but the number of 
variables can make it a tedious and error-prone process. Fortunately, we can simplify the 
process and make it easier to implement using the notation of matrices we covered in chapter 
5. 
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16.3.4 Calculating activations in matrix notation 

As nasty as it could be, let’s do a concrete example and write the formula for the activations of 
a whole layer of the network, and then we’ll see how to simplify it in matrix notation and write 
a reusable formula. Let’s take layer two. The formulas for the three activations are as follows: 

 

 

 
It turns out to be useful to name the quantities inside the sigmoid function. Let’s denote the 
three quantities 𝑧𝑧12, 𝑧𝑧22, and 𝑧𝑧32, so that by definition  

 

 
and  

 
The formulas for these z values are nicer because they are all linear combinations of the previous 
layer activations, plus a constant. That means we can write them in matrix vector notation. 
Starting with 

 

 

 
we can write all three equations as a vector 

 
and then pull out the biases as a vector sum: 
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This is just a 3D vector addition. Even though the big vector in the middle looks like a larger 
matrix, it is just a column of three sums. This big vector, however, can be expanded into a 
matrix multiplication as follows: 

. 
The activations in layer two are then obtained by applying σ to every entry of the resulting 
vector. This is nothing more than a notational simplification, but it is useful psychologically to 
pull out the numbers 𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙  and 𝑏𝑏𝑖𝑖𝑙𝑙 into their own matrices. These are the numbers that define the 
neural network itself, as opposed to the activations 𝑎𝑎𝑖𝑖𝑙𝑙 that are the incremental steps in the 
evaluation. 

To see what I mean, you can compare evaluating a neural network to evaluating the function 
f(x) = ax + b. The input variable is x, and by contrast, a and b are the constants that define the 
function; the space of possible linear functions is defined by the choice of a and b. The quantity 
ax, even if we relabeled it something like q is merely an incremental step in the calculation of 
f(x). The analogy is that, once you’ve decided the number of neurons per layer in your MLP, the 
matrices of weights and vectors of biases for each layer are really the data defining the neural 
network. With that in mind, we can implement the MLP in Python. 

16.3.5 Exercises 

 
Exercise 16.4: What neuron and layer is represented by the activation 𝑎𝑎23? What value does this activation have in the 
following image? (Neurons and layers are indexed as throughout the previous sections). 
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Solution: The superscript indicates the layer, and the subscript indicates the neuron within the layer. The activation 𝑎𝑎23, 
therefore, corresponds to the second neuron in layer 3. In the image, it has an activation value of 0.9. 
 

 
Exercise 16.5: If layer 5 of a neural network has 10 neurons and layer 6 has 12 neurons, how many total connections 
are there between neurons in layers 5 and 6? 
Solution: Each of the 10 neurons in layer 5 is connected to each of the 12 neurons in layer 6. That’s 120 total 
connections. 
 

 
Exercise 16.6: Suppose we have an MLP with 12 layers. What are the indices l, i, and j of the weight 𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙 , connecting the 

third neuron of layer 4 to the seventh neuron of the layer 5? 
Solution: Remember that l is the destination layer of the connection, so l = 5 in this case. The indices i and j refer to the 
neurons in layers l and l - 1, respectively, so i = 7 and j = 3. The weight is labeled 𝑤𝑤73

5 . 
 

 
Exercise 16.7: Where is the weight 𝑤𝑤31

3  in the network used throughout the section? 
Solution: There is no such weight. This would connect to a third neuron in layer three, the output layer, but there are 
only two neurons in this layer. 
 

 
Exercise 16.8: In the neural network from this section, what’s a formula for 𝑎𝑎13 in terms of the activations of layer 2 and 
the weights and biases? 
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Solution: The previous layer activations are 𝑎𝑎12, 𝑎𝑎22, and 𝑎𝑎32, and the weights connecting them to 𝑎𝑎13 are 𝑤𝑤113 , 𝑤𝑤123 , and 𝑤𝑤133 . 
The bias for activation 𝑎𝑎13 is denoted 𝑏𝑏13, so the formula is as follows: 

 
 

 
Mini-project 16.9: Write a Python function sketch_mlp(*layer_sizes) that takes layer sizes of a neural network 
and outputs a diagram like the ones used throughout this section. Show all of the neurons with labels and draw their 
connections with straight lines. Calling sketch_mlp(3,4,3,2) should produce the example from the diagram we 
have used to represent the neural net throughout. 
Solution: See the source code for this book for an implementation. 
 

16.4 Building a neural network in Python 
In this section, I show you how to take the procedure for evaluating an MLP that I explained in 
the last section and implement it in Python. Specifically, we’ll implement a Python class called 
MLP that stores weights and biases (randomly generated at first), and provides an evaluate 
method that takes a 64-dimensional input vector and returns the output 10-dimensional vector. 
This code is a somewhat rote translation of the MLP design I described in the last section into 
Python, but once we’re done with the implementation, we can test it at the task of classifying 
handwritten digits. 

As long as the weights and biases are randomly selected, it probably won’t do better than the 
random classifier we built to start with. But once we have the structure of a neural network to 
predict for us, we can tune the weights and biases to make it more predictive. We’ll turn to that 
problem in the next section. 

16.4.1 Implementing an MLP class in Python 

If we want our class to represent an MLP, we need to specify how many layers we want and how 
many neurons we want per layer. To initialize our MLP with the structure we want, our 
constructor can take a list of numbers, representing the number of neurons in each layer. 

The data we need to evaluate the MLP are the weights and biases for every layer after the input 
layer. As we just covered, we can store the weights as a matrix (a NumPy array) and the biases 
as a vector (also a NumPy array). To start, we can use random values for all of the weights and 
biases and then when we train the network, we can gradually replace these values with more 
meaningful ones. 

Let’s quickly review the dimensions of the weight matrices and bias vectors that we want. If we 
pick a layer with m neurons, and the previous layer has n neurons, then our weights describe 
the linear part of the transformation from an n-dimensional vector of activations to an m-
dimensional vector of activations. That’s described by an m-by-n matrix; in other words, one 
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with m rows and n columns. To see this, we can return to the example from section 16.3.4, 
where the weights connecting a layer with four neurons to a layer with three neurons made up 
a 4-by-3 matrix as shown in figure 16.15. 

 
Figure 16.15: The weight matrix connecting a four neuron layer to a three neuron layer is a 3-by-4 matrix. 

The biases for a layer of m neurons simply make up a vector with m entries, one for each 
neuron. Now that we’ve reminded ourselves how to find the size of the weight matrix and bias 
vector for each layer, we’re ready to have our class constructor create them. Notice that we 
iterate over layer_sizes[1:], which gives us the sizes of layers in the MLP, skipping the input 
layer which comes first: 

class MLP(): 
    def __init__(self,layer_sizes): #<1> 
        self.layer_sizes = layer_sizes 
        self.weights = [ 
            np.random.rand(n,m) #<2> 
            for m,n in zip(layer_sizes[:-1], 

                           layer_sizes[1:]) #<3> 
        ] 
        self.biases = [np.random.rand(n)  

                       for n in layer_sizes[1:]] #<4> 

#1 Initializes the MLP with a list of layer sizes, giving the number of neurons for each layer 
#2 The weight matrices are n-by-m matrices with random entries ... 
#3 … where m and n are the number of neurons of adjacent layers in the neural network. 
#4 The bias for each layer (skipping the first) is a vector with one entry per neuron in the layer. 

With this implemented, we can double-check that a two-layer MLP has exactly one weight matrix 
and one bias vector, and the dimensions match. Let’s say the first layer has two neurons and 
the second layer has three neurons. Then we can run this code: 
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>>> nn = MLP([2,3]) 
>>> nn.weights 
[array([[0.45390063, 0.02891635], 
        [0.15418494, 0.70165829], 
        [0.88135556, 0.50607624]])] 
>>> nn.biases 
[array([0.08668222, 0.35470513, 0.98076987])] 

This confirms that we’ve a single 3-by-2 weight matrix and a single 3D bias vector, both 
populated with random entries. 

The number of neurons in the input layer and output layer should match the dimensions of 
vectors we want to pass in and receive as output. Our problem of image classification calls for 
a 64D input vector and a 10D output vector. For this chapter, I stick with a 64-neuron input 
layer, a 10-neuron output layer, and a single 16-neuron layer in between. There is some 
combination of art and science to picking the right number of layers and layer sizes to get a 
neural network to perform well on a given task, and that’s the kind of thing machine learning 
experts get paid big bucks for. For the purpose of this chapter, I say this structure is sufficient 
to get us a good, predictive model. 

Our neural network can be initialized as MLP([64,16,10]), and it is much bigger than any of 
the ones we’ve drawn so far. Figure 16.16 shows what it looks like. 
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Figure 16.16: An MLP with three layers of 64, 16, and 10 neurons, respectively 

Fortunately, once we implement our evaluation method, it’s no harder for us to evaluate a big 
neural network than a small one. That’s because Python does all of the work for us! 

16.4.2 Evaluating the MLP 

An evaluation method for our MLP class should take a 64D vector as input and return a 10D 
vector as output. The procedure to get from the input to the output is based on calculating the 
activations layer-by-layer from the input layer all the way to the output layer. As you’ll see when 
we discuss backpropagation, it’s useful to keep track of all of the activations as we go, even for 
the hidden layers in the middle of the network. For that reason, I’ll build the evaluate function 
in two steps: first, I’ll build a method to calculate all of the activations and then I’ll build another 
one to pull the last layer activation values and produce the results. 

I call the first method feedforward, which is a common name for the procedure of calculating 
activations layer-by-layer. The input layer activations are given, and to get to the next layer, 
we need to multiply the vector of these activations by the weight matrix, add the next layer 
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biases, and pass the coordinates of the result through the sigmoid function. We repeat this 
process until we get to the output layer. Here’s what it looks like: 

class MLP(): 
    ... 
    def feedforward(self,v): 
        activations = [] #<1> 
        a = v 
        activations.append(a) #<2> 
        for w,b in zip(self.weights, self.biases): #<3> 
            z = w @ a + b #<4> 
            a = [sigmoid(x) for x in z] #<5> 
            activations.append(a) #<6> 
        return activations 

#1 Initializes with an empty list of activations 
#2 The first layer activations are exactly the entries of the input vector; we append those to the list of activations. 
#3 Iterates over the layers with one weight matrix and bias vector per layer 
#4 The vector z is the matrix product of the weights with the previous layer activations plus the bias vector. 
#5 Takes the sigmoid function of every entry of z to get the activation 
#6 Adds the new computed activation vector to the list of activations 

The last layer activations are the results we want, so an evaluate method for the neural network 
simply runs the feedforward method for the input vector and then extracts the last activation 
vector like this: 

class MLP(): 
    ... 
    def evaluate(self,v): 
        return np.array(self.feedforward(v)[-1]) 

That’s it! You can see that the matrix multiplication saved us a lot of loops over neurons we’d 
otherwise be writing to calculate the activations. 

16.4.3 Testing the classification performance of an MLP 

With an appropriately-sized MLP, it can now accept a vector for a digit image and output a 
result: 

>>> nn = MLP([64,16,10]) 
>>> v = np.matrix.flatten(digits.images[0]) / 15. 
>>> nn.evaluate(v) 
array([0.99990572, 0.9987683 , 0.99994929, 0.99978464, 0.99989691, 
       0.99983505, 0.99991699, 0.99931011, 0.99988506, 0.99939445]) 

That’s passing in a 64-dimensional vector representing an image and returning a 10-dimensional 
vector as an output, so our neural network is behaving as a correctly-shaped vector 
transformation. Because the weights and biases are random, these numbers should not be a 
good prediction of what digit the image is likely to be. (Incidentally, the numbers are all close 
to 1 because all of our weights, biases, and input numbers are positive, and the sigmoid sends 
big positive numbers to values close to 1.) Even so, there is a biggest entry in this output vector, 
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which happens to be the number at index 2. This (incorrectly) predicts that image 0 in the data 
set represents the number 2. 

The randomness suggests that our MLP only guesses 10% of the answers correctly. We can 
confirm this with a test_digit_classify function. For the random MLP I initialized, it gave 
exactly 10%: 

>>> test_digit_classify(nn.evaluate) 
0.1 

This may not seem like much progress, but we can pat ourselves on the back for getting the 
classifier working, even if it’s not good at its task. Evaluating a neural network is much more 
involved than evaluating a simple function like f(x) = ax + b, but we’ll see the payoff soon as 
we train the neural network to classify images more accurately. 

16.4.4 Exercises 

 
Mini-project 16.10: Rewrite the feedforward method using explicit loops over the layers and weights rather than 
using NumPy matrix multiplication. Confirm that your result matches exactly with the previous implementation. 
 

16.5 Training a neural network using gradient descent 
Training a neural network might sound like an abstract concept, but it just means finding the 
best weights and biases that makes the neural network do the task at hand as well as possible. 
We can’t cover the whole algorithm here, but I show you how it works conceptually and how to 
use a third-party library to do it automatically. By the end of this section, we’ll have adjusted 
the weights and biases of our neural network to predict which digit is represented by an image 
to a high degree of accuracy. We can then run it through test_digit_classify again and 
measure how well it does. 

16.5.1 Framing training as a minimization problem 

In the previous chapters for a linear function ax + b or a logistic function σ(ax + by + c), we 
created a cost function that measured the failure of the linear or logistic function, depending on 
the constants in the formula, to match the data exactly. The constants for the linear function 
were the slope and y-intercept a and b, so the cost function had the form C(a, b). The logistic 
function had the constants a, b, and c (to be determined), so its cost function had the form C(a, 
b, c). Internally, both of these cost functions depended on all of the training examples. To find 
the best parameters, we’ll use gradient descent to minimize the cost function. 

The big difference for an MLP is that its behavior can depend on hundreds or thousands of 
constants: all of its weights 𝑤𝑤𝑖𝑖𝑖𝑖

1  and biases 𝑏𝑏𝑖𝑖𝑙𝑙 for every layer l and valid neuron indices i and j. 
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Our neural network with 64, 16, and 10 neurons and its three layers have 64 ⋅ 16 = 1,024 
weights between the first two layers and 16 ⋅ 10 = 160 weights between the second two. It has 
16 biases in the hidden layer and 10 biases in the output layer. All in all, that’s 1,210 constants 
we need to tune. You can picture our cost function as a function of these 1,210 values, which 
we need to minimize. If we write it out, it would look something like this: 

 
In the equation, where I’ve written the ellipses, there are over a thousand more weights and 24 
more biases I didn’t write out. It’s worth thinking briefly about how to create the cost function, 
and as a mini-project, you can try implementing it yourself.  

Our neural network outputs vectors, but we consider the answer to the classification problem to 
be the digit represented by the image. To resolve this, we can think of the correct answer as 
the 10-dimensional vector that a perfect classifier would have as output. For instance, if an 
image clearly represents the digit 5, we would like to see 100% certainty that the image is a 5 
and 0% certainty that the image is any other digit. That means a 1 in the fifth index and 0’s 
elsewhere (figure 16.17). 

 
Figure 16.17: Ideal output from a neural network: 1.0 in the correct index and 0.0 elsewhere 

Just as our previous attempts at regression never fit the data exactly, neither will our neural 
network. To measure the error from our 10-dimensional output vector to the ideal output vector, 
we can use the square of their distance in 10 dimensions. 

Suppose the ideal output is written y = ( y1, y1, y2, ..., y10). Note that I’m following the math 
convention for indexing from 1 rather than the Python convention of indexing from 0. That’s 
actually the same convention I used for neurons within a layer, so the output layer (layer two) 
activations are indexed (a1

2, a2
2, a3

2, ..., 𝑎𝑎102 ). The squared distance between these vectors is 
the sum: 
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As another potentially confusing point, the superscript 2 above the a values indicates the output 
layer is layer two in our network, while the 2 outside the parentheses means squaring the 
quantity. To get a total cost relative to the data set, you can evaluate the neural network for all 
of the sample images and take the average squared distance. At the end of the section, you can 
try the mini-project for implementing this yourself in Python. 

16.5.2 Calculating gradients with backpropagation 

With the cost function C(𝑤𝑤111 , 𝑤𝑤121 , ..., 𝑏𝑏11, 𝑏𝑏21, ...) coded in Python, we could write a 1,210-
dimensional version of gradient descent. This would mean taking 1,210 partial derivatives in 
each step to get a gradient. That gradient would be the 1,210-dimensional vector of the partial 
derivatives at the point, having this form: 

 
Estimating so many partial derivatives would be computationally expensive because each would 
require evaluating C twice to test the effect of tweaking one of its input variables. In turn, 
evaluating C requires looking at every image in the training set and passing it through the 
network. It might be possible to do this, but the computation time would be prohibitively long 
for most real-world problems like ours. 

Instead, the best way to calculate the partial derivatives is to find their exact formulas using 
methods similar to those we covered in chapter 10. I won’t completely cover how to do this, but 
I’ll give you a teaser in the last section. The key is that while there are 1,210 partial derivatives 
to take, they all have the form: 

  
Or 

 
for some choice of indices l, i, and j. The algorithm of backpropagation calculates all of these 
partial derivatives recursively, working backward from the output layer weights and biases, all 
the way to layer one.  
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If you’re interested in learning more about backpropagation, stay tuned for the last section of 
the chapter. For now, I’ll turn to the scikit-learn library to calculate costs, carry out 
backpropagation, and complete the gradient descent automatically. 

16.5.3 Automatic training with scikit-learn 

We don’t need any new concepts to train an MLP with scikit-learn; we just need to tell it to set 
up the problem the same way we have and then find the answer. I won’t explain everything the 
scikit-learn library can do, but I will step you through the code to train the MLP for digit 
classification. 

The first step is to put all of our training data (in this case, the digit images as 64-dimensional 
vectors) into a single NumPy array. Using the first 1,000 images in the data set gives us a 1,000-
by-64 matrix. We’ll also put the first 1,000 answers in an output list: 

x = np.array([np.matrix.flatten(img) for img in digits.images[:1000]]) / 15.0 
y = digits.target[:1000] 

Next, we use the MLP class that comes with scikit-learn to initialize an MLP. The sizes of the 
input and output layers are determined by the data, so we only need to specify the size of our 
single hidden layer in the middle. Additionally, we include parameters telling the MLP how we 
want it to be trained. Here’s the code: 

from sklearn.neural_network import MLPClassifier 
 
mlp = MLPClassifier(hidden_layer_sizes=(16,), #<1> 
                    activation='logistic', #<2> 
                    max_iter=100, #<3> 
                    verbose=10, #<4> 
                    random_state=1, #<5> 
                    learning_rate_init=.1) #<6> 

#1 Specifies that we want a hidden layer with 16 neurons 
#2 Specifies that we want to use logistic (ordinary sigmoid) activation functions in the network 
#3 Sets the maximum number of gradient descent steps to take in case there are convergence issues 
#4 Selects that the training process provides verbose logs 
#5 Initializes the MLP with random weights and biases 
#6 Decides the learning rate or what multiple of the gradient to move in each iteration of the gradient descent 

Once this is done, we can train the neural network to the input data x and corresponding output 
data y in one line: 

mlp.fit(x,y) 

When you run this line of code, you’ll see a bunch of text print in the terminal window as the 
neural network trains. This logging shows how many gradient descent steps it takes and the 
value of the cost function, which scikit-learn calls “loss” instead of “cost.” 

Iteration 1, loss = 2.21958598 
Iteration 2, loss = 1.56912978 
Iteration 3, loss = 0.98970277 
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... 
Iteration 58, loss = 0.00336792 
Iteration 59, loss = 0.00330330 
Iteration 60, loss = 0.00321734 
Training loss did not improve more than tol=0.000100 for two consecutive 
epochs. Stopping. 

At this point, after 60 iterations of gradient descent, a minimum has been found and the MLP is 
trained. You can test it on image vectors using the _predict method. This method takes an 
array of inputs, meaning an array of 64-dimensional vectors, and returns the output vectors for 
all of them. For instance, mlp._predict(x) gives the 10-dimensional output vectors for all 1,000 
image vectors stored in x. The result for the zeroth training example is the zeroth entry of the 
result: 

>>> mlp._predict(x)[0] 
array([9.99766643e-01, 8.43331208e-11, 3.47867059e-06, 1.49956270e-07, 
       1.88677660e-06, 3.44652605e-05, 6.23829017e-06, 1.09043503e-04, 
       1.11195821e-07, 7.79837557e-05]) 

It takes some squinting at these numbers in scientific notation, but the first one is 0.9998, while 
the others are all less than 0.001. This correctly predicts that the zeroth training example is a 
picture of the digit 0. So far so good! 

With a small wrapper, we can write a function that uses this MLP to do one prediction, taking a 
64-dimensional image vector and outputting a 10-dimensional result. Because scikit-learn’s MLP 
works on collections of input vectors and produces arrays of results, we just need to put our 
input vector in a list before passing it to mlp._predict: 

def sklearn_trained_classify(v): 
    return mlp._predict([v])[0] 

At this point, the vector has the correct shape to have its performance tested by our 
test_digit_classify function. Let’s see what percentage of the test digit images it correctly 
identifies: 

>>> test_digit_classify(sklearn_trained_classify) 
1.0 

That’s an astonishing 100% accuracy! You might be skeptical of this result; after all, we’re 
testing on the same data set that the neural network used to train. In theory, when storing 
1,210 numbers, the neural net could have just memorized every example in the training set. If 
you test the images the neural network hasn’t seen before, you’ll see this isn’t the case; it still 
does an impressive job classifying the images correctly as digits. I found that it had 96.2% 
accuracy on the next 500 images in the data set, and you can test this yourself in an exercise. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

16.5.4 Exercises 

 
Exercise 16.11: Modify the test_digit_classify function to work on a custom range of examples in the test set. 
How does it do on the next 500 examples after the 1,000 training examples? 
Solution: Here I’ve added a start keyword argument to indicate which test example to start with. The test_count 
keyword argument still indicates the number of examples to test: 
def test_digit_classify(classifier,start=0,test_count=1000): 

    correct = 0 

    end = start + test_count #<1> 

    for img, target in zip(digits.images[start:end], digits.target[start:end]): #<2> 

        v = np.matrix.flatten(img) / 15 

        output = classifier(v) 

        answer = list(output).index(max(output)) 

        if answer == target: 

            correct += 1 

    return (correct/test_count) 

#1 Calculates the end index for test data we want to consider 
#2 Loops only over the test data between the start and end indices 
My trained MLP identifies 96.2% of these fresh digit images correctly: 
>>> test_digit_classify(sklearn_trained_classify,start=1000,test_count=500) 

0.962 
 

 
Exercise 16.12: Using the squared distance cost function, what is the cost of your randomly generated MLP for the first 
1,000 training examples? What is the cost of the scikit-learn MLP? 
Solution: First, we can write a function to give us the ideal output vector for a given digit. For instance, for the digit 5, 
we’d like an output vector y, which is all zeros except for a one in the fifth index. 
def y_vec(digit): 

    return np.array([1 if i == digit else 0 for i in range(0,10)]) 
The cost of one test example is the sum of squared distance from what the classifier outputs to the ideal result. That’s 
the sum of squared differences in the coordinates added up: 
def cost_one(classifier,x,i): 

    return sum([(classifier(x)[j] - y_vec(i)[j])**2 for j in range(10)]) 
The total cost for a classifier is the average cost over all of the 1,000 training examples: 
def total_cost(classifier): 

    return sum([cost_one(classifier,x[j],y[j]) for j in range(1000)])/1000. 
As expected, a randomly initialized MLP with only 10% predictive accuracy has a much higher cost than a 100% 
accurate MLP produced by scikit-learn: 
>>> total_cost(nn.evaluate) 

8.995371023185067 
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>>> total_cost(sklearn_trained_classify) 

5.670512721637246e-05 

 

 
Mini-project 16.13: Extract the MLPClassifier weights and biases using its properties coefs_ and intercepts_, 
respectively. Plug these weights and biases into the MLP class we built from scratch earlier in this chapter and show 
that your resulting MLP performs well on digit classification. 
Solution: If you try this, you’ll notice one problem: where we expect the weight matrices to be 16-by-64 and 10-by-16, 
the coefs_ property of MLPClassifier gives a 64-by-16 matrix and a 16-by-10 matrix. It looks like scikit-learn uses 
a convention that stores columns of the weight matrices versus our convention that stores rows. There’s a quick way to 
fix this.  
NumPy arrays have a T property returning the transpose of a matrix (a matrix obtained by pivoting the matrix so that 
the rows become the columns of the result). With this trick in mind, we can plug the weights and biases into our neural 
network and test it: 
>>> nn = MLP([64,16,10]) 

>>> nn.weights = [w.T for w in mlp.coefs_] #<1> 

>>> nn.biases = mlp.intercepts_ #<2> 

>>> test_digit_classify(nn.evaluate, 

                        start=1000, 

                        test_count=500) #<3> 

0.962 

#1 Sets our weight matrices to the ones from the scikit-learn MLP, after transposing them to agree with our 
convention 
#2 Sets our network’s biases to the ones from the scikit-learn MLP 
#3 Tests the performance of our neural network at the classification task with new weights and biases 
 
This is 96.2% accurate on the 500 images after the training data set, just like the MLP produced by scikit-learn directly. 
 

16.6 Calculating gradients with backpropagation 
This section is completely optional. Frankly, because you know how to train an MLP using scikit-
learn, you’re ready to solve real-world problems. You can test neural networks of different 
shapes and sizes on classification problems and experiment with their design to improve 
classification performance. Because this is the last section in the book, I wanted to give you 
some final, challenging (but doable!) math to chew on—calculating partial derivatives of the cost 
function by hand. 

The process of calculating partial derivatives of an MLP is called backpropagation because it’s 
efficient to start with the weights and biases of the last layer and work backwards. 
Backpropagation can be broken into four steps: calculating the derivatives with respect to the 
last layer weights, last layer biases, hidden layer weights, and hidden layer biases. I’ll show you 
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how to get the partial derivatives with respect to the weights in the last layer, and you can try 
running with this approach to do the rest. 

16.6.1 Finding the cost in terms of the last layer weights 

Let’s call the index of the last layer of the MLP L. That means that the last weight matrix consists 
of the weights 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿 , where l = L; in other words, the weights 𝑤𝑤𝑖𝑖𝑖𝑖
𝐿𝐿 . The biases in this layer are 𝑏𝑏𝑖𝑖𝐿𝐿 

and the activations are labeled 𝑎𝑎𝑖𝑖𝐿𝐿. 

The formula to get the jth neuron’s activation in the last layer 𝑎𝑎𝑖𝑖𝐿𝐿 is a sum of the contribution 
from every neuron in layer L − l, indexed by i. In a made-up notation, it becomes 

 
The sum is taken over all values of i from one to the number of neurons in layer L − l. Let’s 
write the number of neurons in layer l as ni, with i ranging from l to nL-1 in our sum. In proper 
mathematical summation notation, this sum is written: 

 
The English translation of this formula is “fixing values of L and j by adding up the values of the 
expression 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿 𝑎𝑎𝑖𝑖𝐿𝐿−1 for every i from one to nL.” This is nothing more than the formula for matrix 
multiplication written as a sum. In this form, the activation is as follows:  

 
Given an actual training example, we can have some ideal output vector y with a 1 in the correct 
slot and 0’s elsewhere. The cost is the squared distance between the activation vector 𝑎𝑎𝑖𝑖𝐿𝐿 and 
the ideal output values yj. That is, 

 
The impact of a weight 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿  on C is indirect. First, it is multiplied by an activation from the previous 
layer, added to the bias, passed through a sigmoid, and then passed through the quadratic cost 
function. Fortunately, we covered how to take derivatives of compositions of functions in chapter 
10. This example is a bit more complicated, but you should be able to recognize it as the same 
chain rule we saw before. 

16.6.2 Calculating the partial derivatives for the last layer weights using the 
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chain rule 

Let’s break it down into three steps to get from 𝑤𝑤𝑖𝑖𝑖𝑖
𝐿𝐿  to C. First, we can calculate the value to be 

passed into the sigmoid, which we called 𝑧𝑧𝑖𝑖𝐿𝐿 earlier in the chapter: 

 
Then we can pass 𝑧𝑧𝑖𝑖𝐿𝐿 into the sigmoid function to get the activation 𝑎𝑎𝑖𝑖𝐿𝐿: 

 
And finally, we can compute the cost: 

 
To find the partial derivative of C with respect to 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿 , we multiply the derivatives of these three 
“composed” expressions together. The derivative of 𝑧𝑧𝑖𝑖𝐿𝐿 with respect to one particular 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿  is the 
specific activation 𝑎𝑎𝑖𝑖𝐿𝐿−1 that it’s multiplied by. This is similar to the derivative of y(x) = ax with 
respect to x, which is the constant a. The partial derivative is 

 
The next step is applying the sigmoid function, so the derivative of 𝑎𝑎𝑖𝑖𝐿𝐿 with respect to 𝑧𝑧𝑖𝑖𝐿𝐿 is the 
derivative of σ. It turns out, and you can confirm this as an exercise, that the derivative of σ(x) 
is σ(x)(1 − σ(x)). This nice formula follows in part from the fact that ex is its own derivative. 
That gives us: 

 
This is an ordinary derivative, not a partial derivative, because 𝑎𝑎𝑖𝑖𝐿𝐿 is a function of only one input: 
𝑧𝑧𝑖𝑖𝐿𝐿. Finally, we need the derivative of C with respect to 𝑎𝑎𝑖𝑖𝐿𝐿. Only one term of the sum depends 
on 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿 , so we just need the derivative of (𝑎𝑎𝑖𝑖𝐿𝐿 − yj)2 with respect to 𝑎𝑎𝑖𝑖𝐿𝐿. In this context, yj is a 
constant, so the derivative is 2𝑎𝑎𝑖𝑖𝐿𝐿. This comes from the power rule, telling us that if f(x) = x2, 
then f'(x) = 2x. For our last derivative, we need 
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The multivariable version of the chain rule says the following: 

 
This looks a little bit different from the version we saw in chapter 10, which covered only 
composition of two functions of one variable. The principle is the same here though: with C 
written in terms of 𝑎𝑎𝑖𝑖𝐿𝐿, 𝑎𝑎𝑖𝑖𝐿𝐿 written in terms of 𝑧𝑧𝑖𝑖𝐿𝐿, and 𝑧𝑧𝑖𝑖𝐿𝐿 written in terms of 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿 , we have C written 
in terms of 𝑤𝑤𝑖𝑖𝑖𝑖

𝐿𝐿 . What the chain rule says is that to get the derivative of the whole chain, we 
multiply together the derivatives of each step. Plugging in the derivatives, the result is 

 
This formula is one of the four we need to find the whole gradient of C. Specifically, this gives 
us the partial derivative for any weight in the last layer. There are 16 × 10 of these, so we’ve 
covered 160 of the 1,210 total partial derivatives we need to have the complete gradient. 

The reason I’ll stop here is because derivatives of other weights require more complicated 
applications of the chain rule. An activation influences every subsequent activation in the neural 
network, so every weight influences every subsequent activation. This isn’t beyond your 
capabilities, but I feel I’d owe you a better explanation of the multivariable chain rule before 
digging in. If you’re interested in going deeper, there are excellent resources online that walk 
through all the steps of backpropagation in gory detail. Otherwise, you can stay tuned for the 
(fingers crossed) sequel to this book. Thanks for reading! 

16.6.3 Exercises 

 
Mini-project 16.14: Use SymPy or your own code from chapter 10 to automatically find the derivative of the sigmoid 
function 

 
Show that the answer you get is equal to 𝜎𝜎(x)(1 − σ(x)). 
Solution: In SymPy, we can quickly get a formula for the derivative: 
>>> from sympy import * 

>>> X = symbols('x') 

>>> diff(1 / (1+exp(-X)),X) 

exp(-x)/(1 + exp(-x))**2 
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In math notation, that’s 

 
The computation to show this expression equals σ(x)(1 − σ(x)) and requires a bit of rote algebra, but it’s worth it to 
convince yourself that this formula is valid. Multiplying the top and bottom by ex and noting that ex ⋅ e − x = 1, we get  

 

 

 

 

 
 

 

16.7 Summary 
• An artificial neural network is a mathematical function whose computation mirrors the 

flow of signals in the human brain. As a function, it takes a vector as input and returns 
another vector as output. 

• A neural network can be used to classify vector data; for instance, images converted to 
vectors of grayscale pixel values. The output of the neural network is a vector of numbers 
that express confidence that the input vector should be classified in any of the possible 
classes. 

• A multilayer perceptron (MLP) is a particular kind of artificial neural network consisting 
of several ordered layers of neurons, where the neurons in each layer are connected to 
and influenced by the neurons in the previous layer. During evaluation of the neural 
network, each neuron gets a number that is its activation. You can think of an activation 
as an intermediate yes-or-no answer on the way to solving the classification problem. 

• To evaluate a neural network, the activations of the first layer of neurons are set to the 
entries of the input vector. Each subsequent layer of activations is calculated as a function 
of the previous layer. The final layer of activations is treated as a vector and returned as 
the result vector of the calculation. 

• The activation of a neuron is based on a linear combination of the activations of all 
neurons in the previous layer. The coefficients in the linear combination are called 
weights. Each neuron also has a bias, a number which is added to the linear combination. 
This value is passed through a sigmoid function to get the activation function. 

• Training a neural network means tuning the values of all of the weights and biases so 
that it performs its task optimally. To do this, you can measure the error of the neural 
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network’s predictions relative to actual answers from a training data set with a cost 
function. With a fixed training data set, the cost function depends only on the weights 
and biases. 

• Gradient descent allows us to find the values of weights and biases that minimize the 
cost function and yield the best neural network. 

• Neural networks can be trained efficiently because there are simple, exact formulas for 
the partial derivatives of the cost function with respect to the weights and biases. These 
are found using an algorithm called backpropagation, which in turn makes use of the 
chain rule from calculus. 

• Python’s scikit-learn library has a built in MLPClassifer class that can automatically be 
trained on classified vector data. 
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Getting set up with Python 

This appendix covers the basic steps to get Python and related tools installed so you can run 
the code examples in this book. The main thing to install is Anaconda, which is a popular Python 
distribution for mathematical programming and data science. Specifically, Anaconda comes with 
an interpreter that runs Python code, as well as a number of the most popular math and data 
science libraries and a coding interface called Jupyter. The steps are mostly the same on any 
Linux, Mac, or Windows machine. I’m going to show you the steps on my Mac. 

A.1 Checking for an existing Python installation 
It’s possible you already have Python installed on your computer, even if you didn’t realize it. 
To check the existing installation, open a terminal window (or CMD or PowerShell on Windows) 
and type python. On a Mac straight from the factory, you should see a Python 2.7 terminal 
appear. You can press Ctrl-D to exit the terminal. 

 
For the examples in this book, I use Python 3, which is becoming the new standard, and 
specifically, I use the Anaconda distribution. As a warning, if you have an existing Python 
installation, the following steps might be tricky. If any of the instructions below don’t work for 
you, my best advice is to search Google or StackOverflow with any error messages you see. 
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If you are a Python expert and don’t want to install or use Anaconda, you should be able to find 
and install the relevant libraries like NumPy, Matplotlib, and Jupyter using the pip package 
manager. For a beginner, I strongly recommend installing Anaconda as follows. 

A.2 Downloading and installing Anaconda 
Go to https://www.anaconda.com/distribution/ to download the Anaconda Python distribution. 
Click Download and choose the Python version beginning with 3 (figure A1). At the time of 
writing, this was Python 3.7. 

 
Figure A.1: At the time of writing, here’s what I see after clicking Download on the Anaconda website. To install 
Python, choose the Python 3.x download link. 

Open the installer. It walks you through the installation process. The installer dialog box looks 
different depending on your operating system, but figure A.2 shows what it looks like on my 
Mac. 
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Figure A.2: The Anaconda installer as it appears on my Mac 

I used the default installation location and didn’t add any optional features like the PyCharm 
IDE. Once the installation is complete, you should be able to open a fresh terminal. Type python 
to enter a Python 3 session with Anaconda (figure A.3). 

 
Figure A.3: How the Python interactive session should look once you install Anaconda. Notice the Python 3.7.3 
and the Anaconda, Inc. labels that appear. 

If you don’t see a Python version starting with the number 3 and the word Anaconda, it probably 
means you’re stuck on the previous Python installation on your system. You need to edit your 
PATH environment variables so that your terminal knows which Python version you want when 
you type python in a terminal window. Hopefully, you won’t run into this problem, but if so, you 
can search online for a fix. You can also type python3 instead of python to explicitly use your 
Python 3 installation. 
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A.3 Using Python in interactive mode 
Three angle brackets (>>>) in the terminal window prompt you to enter a line of Python code. 
When you type 2+2 and press Enter, you should see the Python interpreter’s evaluation of this 
statement, which is 4 (figure A.4). 

 
Figure A.4: Entering a line of Python in the interactive session 

Interactive mode is also referred to as a REPL, standing for read-evaluate-print loop. The Python 
session reads in a line of typed code, evaluates it, and prints the result, and this process is 
repeated as many times as you want in a loop. Pressing Ctrl-D signifies that you’re done entering 
code and sends you back to your terminal session. 

Python interactive can usually identify if you enter a multi-line statement. For instance, def 
f(x): is the first line you enter when defining a new Python function called f. The Python 
interactive session shows you ... to indicate that it expects more input (figure A.5). 

 
Figure A.5: The Python interpreter knows you’re not done with your multi-line statement. 

You can indent to augment the function and then you need to press Enter twice to let Python 
know that you’ve finished the multi-line code input and to implement the function (figure A.6). 

 
Figure A.6: Once you’ve completed your multi-line code, you need to press Enter twice to submit it. 

The function f is now defined in your interactive session. On the next line, you can give Python 
input to evaluate (figure A.7). 
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Figure A.7: Evaluating the function defined previously 

Beware that any code you write in an interactive session disappears when you exit the session. 
For that reason, if you’re writing a lot of code, it’s best to put it in a script file or in a Jupyter 
notebook. I’ll cover both of these methods next. 

A.3.1 Creating and running a Python script file 

You can create Python files with basically any text editor you like. As usual, it’s better to use a 
text editor designed for programming rather than a rich-text editor like Microsoft Word, which 
could insert invisible or unwanted characters for formatting. My preference is Visual Studio Code, 
and other popular choices are Atom, which is cross-platform, and Notepad++ for Windows. At 
your own risk, you can use a terminal-based text editor like Emacs or Vim. All of these tools are 
free and readily downloadable. 

To create a Python script, simply create a new text file in your editor with a .py filename 
extension. Figure A.8 shows that I’ve created a file called first.py, which is in my ~/Documents 
directory. You can also see in figure A.8 that my text editor, Visual Studio Code, comes with 
syntax highlighting for Python. Keywords, functions, and literal values are colored to make it 
easy to read the code. Many editors (including Visual Studio Code) have optional extensions you 
can install to give you more helpful tools like checking for simple errors as you type, for instance. 

Figure A.8 shows a few lines of Python code typed into the first.py file. Because this is a math 
book, we can use an example that’s more “mathy” than Hello World. When we run the code, it 
prints the squares of all digits from 0 to 9. 

 
Figure A.8: Some example Python code in a file. This code prints the squares of all digits from 0 to 9. 
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Back in the terminal, go to the directory where your Python file lives. On my Mac, I go to the 
~/Documents directory by typing cd ~/Documents. You can type ls first.py to confirm that 
you’re in the same directory as your Python script (figure A.9). 

 
Figure A.9: The ls command shows you that the file first.py is in the directory. 

To execute the script file, type python first.py into the terminal window. This invokes the 
Python interpreter and tells it to run the first.py file. The interpreter does what we hoped and 
prints some numbers (figure A10). 

 
Figure A.10: The result of running a simple Python script from the command line 

When you’re solving more complicated problems, you might want to break your code up into 
separate files. Next, I’ll show you how to put the function f(x) in a different Python file that can 
be used by first.py. Let’s call this new file function.py and save it in the same directory as 
first.py, then cut and paste the code for f(x) into it (figure A.110). 

 
Figure A.11: Putting the code to define the function f(x) in its own Python file 
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To let Python know that you’re going to combine multiple files in this directory, you need to add 
an empty text file called __init__.py in the directory. (That’s two underscores before and after 
the word init.  

TIP: A quick way to create this empty file on a Mac or Linux machine is to type touch __init__.py. 

To use the function f(x) from function.py in your script first.py, we need to let the Python 
interpreter know to retrieve it. To do that, we write from function import f as the first line 
in first.py (figure A.121). 

 
Figure A.12: Rewriting the file first.py to include the function f(x) 

When you run the command python first.py again, you should get the same result as the 
previous time you ran it. This time, Python is getting the function f from function.py in the 
process. 

An alternative to doing all of your work in text files and running them from the command line is 
to use Jupyter notebooks, which I’ll cover next. For this book, I did most of my examples in 
Jupyter notebooks, but I wrote any reusable code in separate Python files and imported those 
files. 

A.3.2 Using Jupyter notebooks 

A Jupyter Notebook is a graphical interface for coding in Python (and other languages as well). 
As with a Python interactive session, you type lines of code into a Jupyter notebook, and it prints 
the result. The difference is that Jupyter is a prettier interface than your terminal, and you can 
save your sessions to resume or re-run later. 

https://livebook.manning.com/#!/book/math-for-programmers/discussion


 
©Manning Publications Co.  To comment go to  liveBook  

Jupyter Notebook should automatically install with Anaconda. If you’re using a different Python 
distribution, you can install Jupyter with pip as well. See https://jupyter.org/install for 
documentation if you want to do a custom installation. 

To open the Jupyter Notebook interface, type jupyter notebook or python -m notebook in a 
directory you want to work in. You should see a lot of text stream into the terminal, and your 
default web browser should open showing you the Jupyter Notebook interface. 

Figure A.13 shows what I see in my terminal after typing python -m notebook. Again, your 
mileage may vary, depending on the Anaconda version you have. 

 
Figure A.13: What the terminal looks like when you open a Jupyter notebook 

Your default web browser should open, showing the Jupyter interface. Figure A.14 shows what 
I see when Jupyter opens in the Google Chrome browser. 
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Figure A.14: When you start Jupyter, a browser tab automatically opens, looking something like this. 

What’s going on here is that the terminal is running Python behind the scenes and also serving 
a local website at the address localhost:8888. From here on, you only have to think about what’s 
going on in the browser. The browser automatically sends the code you write to the Python 
process in the terminal via web requests. This Python background process is called a kernel in 
Jupyter terminology. 

At the first screen that opens in the browser, you can see all of the files in the directory you’re 
working in. For example, I opened the notebook in my ~/Documents folder, so I can see the 
Python files we wrote in the last section. If you click one of the files, you’ll see you can view and 
edit it directly in the web browser. Figure A.15 shows what I see when I click first.py. 

 
Figure A.15: Jupyter has a basic text editor for Python files. Here, I’ve opened the first.py file.  
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This isn’t a notebook yet. A notebook is a different kind of file than an ordinary Python file. To 
create a notebook, return to the main view by clicking the Jupyter logo in the top left corner, 
then go to the New dropdown menu on the right, and click Python 3 (figure A.16). 

 
Figure A.16: Selecting the menu option to create a new Python 3 notebook 

Once you’ve clicked Python 3, you’ll be taken to your new notebook. It should look like the one 
shown in figure A.17, with one blank input line ready to accept some Python code. 

 
Figure A.17: A new, empty Jupyter notebook ready for coding. 

You can type a Python expression into the text box and then press Shift-Enter to evaluate it. In 
figure A.18, I typed 2+2 and then pressed Shift-Enter to see the output, 4. 
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Figure A.18: Evaluating 2 + 2 in a Jupyter notebook 

As you can see, it works just like an interactive session except it looks nicer. Each input is shown 
in a box, and the corresponding output is shown below it.  

If you just press Enter rather than Shift-Enter, you can add a new line inside your input box. In 
the interface, variables and functions defined in boxes above can be used by boxes below. Figure 
A.19 shows what our original example could look like in a Jupyter notebook. 

 
Figure A.19: Writing and evaluating several snippets of Python code in a Jupyter notebook. Notice the input 
boxes and the resulting output. 

Strictly speaking, each box doesn’t depend on the boxes above it, but on the boxes you 
previously evaluated. For example, if I redefine the function f(x) in the next input box, and 
then rerun the previous box, I overwrite the previous output (figure A.20). 
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Figure A.20: If you redefine a symbol like f below the previous output and then rerun a box above, Python uses 
the new definition. Compare this figure with figure A.19 to see the new cell. 

This can be confusing, but at least Jupyter renumbers the input boxes as you run them. For 
reproducibility, I suggest you define variables and functions above their first usage. You can 
confirm your code runs correctly from top to bottom by clicking the menu item Kernel > Restart 
& Run All (figure A.21). This wipes out all of your existing computations, but if you stay 
organized, you should get the same results back. 
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Figure A.21: Use the menu item Restart & Run All to clear the outputs and run all of your inputs from top to 
bottom. 

Your notebook is automatically saved as you go. When you’re done coding, you can name the 
notebook by clicking Untitled at the top of the screen and entering a new name (figure A.22). 

 
Figure A.22: Giving your notebook a name 

Then you can click the Jupyter logo once again to return to the main menu, and you should see 
your new notebook saved as a file with the .ipynb extension (figure A.23). If you want to return 
to your notebook, you can click its name to open it. 
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FIgure A.23: Your new Jupyter notebook appears. 

TIP: To make sure all your files are saved, you should exit Jupyter by clicking Quit rather than just closing the 

browser tab or stopping the interactive process. 

For more info on Jupyter notebooks, you can consult the extensive documentation at 
https://jupyter.org/. At this point, however, you know enough to download and play with the 
source code for this book, which is organized in a Jupyter notebook for almost all of the chapters. 
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Python tips and tricks 

After following the set-up instructions in appendix A, you should be able to run Python code on 
your computer. If you’re new to Python, the next step is to learn some of the language features. 
If you haven’t seen any Python before, don’t sweat! It’s one of the simplest and easiest-to-learn 
programming languages out there. Plus, there are many excellent online resources and books 
to help you learn the basics of Python programming, and the website python.org is a great 
starting point.  

This appendix assumes you’ve tinkered around with Python a bit and are comfortable with the 
basics: numbers, strings, True and False, if/else statements, and so on. To make this book as 
accessible as possible, I’ve avoided using advanced Python language features. This appendix 
covers some Python features used in this book that are either beyond the “basics” or warrant 
special attention because of their importance in this book. Don’t worry if this is a lot to digest; 
when these features appear in the book, I often include a quick review of how they work. All of 
the code in this appendix is covered in a “walkthrough” notebook in the source code. 

B.1 Python numbers and math 
Like most languages, Python has built-in support for basic math. I’ll assume you’re already 
familiar with the basic Python arithmetic operators: +, -, *, and /. Note that when you divide 
integers in Python 3, you can get a fractional value; for instance, 

>>> 7/2 
3.5 

By contrast, in Python 2, this would have returned 2, which is the result of whole number division 
with the remainder of 1 discarded. But sometimes we want to get a remainder; in which case, 
we can use the % operator, called the modulus operator. Running 13 % 5 returns 3, which tells 
us that 13 divided by 5 has remainder 3 (as in 13 = 2 ⨉ 5 + 3). Note also that the modulus 
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operator works for floating-point numbers. In particular, you can use it to get the fractional part 
of a number as the remainder when dividing by 1. Running 3.75 % 1 returns 0.75. 

Another useful operator beyond the basic four is the ** operator, which raises numbers to a 
given power. For instance, 2 ** 3 represents two to the third power, or two cubed, which is 8. 
Similarly, 4 ** 2 is four squared, which is 16. 

A final thing to keep in mind when doing math in Python is that floating-point arithmetic is not 
exact. I won’t go into why this is, but will show you what it looks like so you aren’t caught by 
surprise. For instance, 1000.1 - 1000.0 is obviously 0.1, but Python doesn’t compute this value 
exactly: 

>>> 1000.1 - 1000.0 
0.10000000000002274 

Of course, this result is within one-trillionth of the correct answer so it won’t cause us problems, 
but it can lead to results that look wrong at first glance. For instance, we expect (1000.1 − 
1000.0) − 0.1 to be zero, but Python gives us a big, hairy-looking result instead: 

>>> (1000.1 - 1000.0) - 0.1 
2.273181642920008e-14 

This long number is written in scientific notation and is roughly 2.27 times 10-14 power. The 
number 10-14 is the same as 1/100,000,000,000,000 (1 over 1 followed by 14 zeros or 1 over 
100 trillion), so this number is very close to zero after all. 

B.1.1 The math module 

Python has a math module with more helpful mathematical values and functions. Like any 
Python module, you need to import the objects you want to use from it. For instance, 

from math import pi 

imports the variable pi from the math module, which represents the number 𝜋𝜋. You may 
remember 𝜋𝜋 from geometry class: it’s the ratio of the circumference of a circle to its diameter. 
With the value pi imported, we can use it in subsequent code like any other variable: 

>>> pi 
3.141592653589793 
>>> tau = 2 * pi 
>>> tau 
6.283185307179586 

Another way to access values from modules in Python is to import the module itself and then 
access the values as needed. Here I import the math module and then use it to access the 
number 𝜋𝜋 and another special number e that we’ll run into a few times. 

>>> import math 
>>> math.pi 
3.141592653589793 
>>> math.e 
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2.718281828459045 

The math module also contains a number of important functions we’ll use in the book. Among 
these are the square root function sqrt, the trigonometric functions cos and sin, the 
exponential function exp, and the natural logarithm function log. We’ll go over each of these 
functions as needed, but the important thing to know for now is that you call them like ordinary 
Python functions, providing their input values in parentheses: 

>>> math.sqrt(25) 
5.0 
>>> math.sin(pi/2) 

1.0 
>>> math.cos(pi/3) 
0.5000000000000001 
>>> math.exp(2) 
7.38905609893065 
>>> math.log(math.exp(2)) 
2.0 

As a quick reminder about exponential functions, math.exp(x) is the same as e ** x, for any 
value of x, and the math.log function undoes the effect of math.exp. The trigonometric functions 
are introduced in chapter 2. 

B.1.2 Random numbers 

Sometimes we want to choose some arbitrary numbers to test our computations, and we can 
use Python’s random number generators to do this. These are stored in the random module, so 
we need to import that first: 

import random 

The first important function in this module is randint, which returns a randomly selected 
floating-point value from a given range. If you run random.randint(0,10), you get a randomly 
selected integer from 0 to 10, and both 0 and 10 are possible outputs: 

>>> random.randint(0,10) 
7 
>>> random.randint(0,10) 
1 

The other function we use for generating random numbers is random.uniform, which generates 
a random floating-point number on a specified interval. The following code returns a randomly 
selected number between 7.5 and 9.5: 

>>> random.uniform(7.5, 9.5) 
8.200084576283352 

The word uniform indicates that no subrange is more likely than any other. By contrast, if you 
picked people at random and returned their ages, you would get a non-uniform distribution of 
random numbers, meaning you’d find more far people between ages 10-20 than between ages 
100-110. 
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B.2 Collections of data in Python 
Throughout this book, we do math involving collections of data. These can be ordered pairs of 
numbers representing points in the plane, lists of numbers representing measured data from 
the real world, or sets of symbols in an algebraic expression. Python has a number of ways to 
model collections, and in this section, I’ll introduce them and compare them. 

B.2.1 Lists 

The most basic collection in Python is the list. To create a list, simply enclose some values 
between square brackets and separate them by commas. Here’s a list of three strings, saved as 
a variable called months: 

months = ["January", "February", "March"] 

We can retrieve an entry from a list by its index (plural, indices) or its numerical position in the 
list. In Python, lists are zero-indexed, meaning the entries are numbered, counting from zero 
instead of from one. In the months list, the three indices are 0, 1, and 2. Therefore, we can get 

>>> months[0] 
'January' 
>>> months[1] 
'February' 
>>> months[2] 
'March' 

Attempting to access an entry of a list outside the range of valid indices returns an error. For 
example, there’s no months[3] or months[17]. A trick I use in a few places in the book is to 
use the modulus operator on indices to guarantee a valid entry. For any Python integer n, 
months[n % 3] is guaranteed to be valid because n % 3 always returns 0, 1, or 2. 

Another way to access list entries is to unpack them. If we are sure there are three entries in 
the list of months, we can write 

j, f, m = months 

which sets the variables j, f, and m equal to the three values from months in order. After running 
this, we have 

>>> j 
'January' 
>>> f 
'February' 
>>> m 
'March' 

Another basic thing we can do with lists is concatenate them or combine them in order to make 
a bigger list. In Python, this is done with the + operator. Concatenating [1, 2, 3] and [4, 5, 6] 
gives us a new list consisting of the entries of the first followed by the entries of the second:  

>>> [1,2,3] + [4,5,6] 
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[1, 2, 3, 4, 5, 6] 

MORE LIST INDEXING AND SLICING 

Python also lets you extract a slice of a list, which is the list of all values between two indices. 
For instance, 

>>> months[1:3] 
['February', 'March'] 

gives the slice starting at index 1 and going up to (but not including) index 3. For an even clearer 
example, we can look at a list whose entries are equal to their corresponding indices: 

>>> nums = [0,1,2,3,4,5,6,7,8,9,10] 
>>> nums[2:5] 
[2, 3, 4] 

The length of a list can be computed with the len function: 

>>> len(months) 
3 
>>> len(nums) 
11 

Because the entries of a list are indexed starting from zero, the last entry in a list has index one 
less than the length of the list. To get the last entry of a list (like nums), we can write 

>>> nums[len(nums)-1] 
10 

To get the last entry of a list, you can also use 

>>> nums[-1] 
10 

Likewise, nums[-2] returns the second-to-last entry of the nums list, which is 9. There are many 
ways to combine positive and negative indices and slices. For instance, nums[1:] returns all 
entries of the list except the first (at index zero), and nums[3:-1] returns the entries of nums 
from index 3 up until the second to last entry: 

>>> nums[1:] 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
>>> nums[3:-1] 
[3, 4, 5, 6, 7, 8, 9] 

Make sure not to confuse the slice syntax, which involves two indices, with retrieving an entry 
from a list of lists, which also involves two indices. With a list like 

list_of_lists = [[1,2,3],[4,5,6],[7,8,9]] 

the number 8 is in the third list (index 2) and it’s the second entry (index 1) in that list, so if we 
run list_of_lists[2][1] we get 8. 
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ITERATING OVER A LIST 

Often when we’re computing something about a list, we want to use every value in it. That 
means iterating over the list, visiting all of its values. The easiest way to do this in Python is 
with a for loop. The following for loop prints a statement for each value in the months list: 

>>> for x in months: 
>>>     print('Month: ' + x) 
Month: January 
Month: February 
Month: March 

It’s also possible to build a new list by starting with an empty list and successively adding entries 
to it using the append method. This next code creates an empty list called squares and then 
loops over the nums list, adding the square of each number in nums to the squares list by calling 
squares.append: 

squares = [] 
for n in nums: 
    squares.append(n * n) 

By the end of the for loop, squares contain the square of every number in nums: 

>>> squares 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 

LIST COMPREHENSIONS 

Python has a special syntax for iteratively building lists: the list comprehension. A list 
comprehension is essentially a special kind of for loop that lives between square brackets, 
indicating that list entries are being added at each step of the iteration. List comprehensions 
read like plain English, making it easy to understand what they are doing. For instance, the 
following list comprehension builds a list consisting of squares of the form x * x for every value 
x in the nums list: 

>>> [x * x for x in nums] 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 

It’s possible to iterate over multiple source lists in a list comprehension. For instance, the 
following code loops over all possible values from both a years list and a months list, making 
every combination of a year and a month into a string: 

>>> years = [2018,2019,2020] 
>>> [m + " " + str(y) for y in years for m in months] 
['January 2018', 
 'February 2018', 
 'March 2018', 
 'January 2019', 
 'February 2019', 
 'March 2019', 
 'January 2020', 
 'February 2020', 
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 'March 2020'] 

Similarly, we can build a list of lists by putting one comprehension inside of another. Adding one 
more pair of square brackets, we change the comprehension to return a list for each value in 
the months list: 

>>> [[m + " " + str(y) for y in years] for m in months] 
[['January 2018', 'January 2019', 'January 2020'], 
 ['February 2018', 'February 2019', 'February 2020'], 
 ['March 2018', 'March 2019', 'March 2020']] 

B.2.2 Other iterables 

In Python, and especially in Python 3.x, there are a few other types of collections. In particular, 
some of these are referred to as iterables because we can iterate over them as if they were lists. 
Probably the most frequently used in this book are ranges, which are used to construct 
sequences of numbers in order. For instance, range(5,10) represents the sequence of integers 
starting from 5 and going up to (but not including) 10. If you evaluate range(5,10) on its own 
in Python, the result is unexciting: 

>>> range(5,10) 
range(5, 10) 

Even though a range doesn’t display the numbers that make it up, we can iterate over it just 
like a list: 

>>> for i in range(5,10): 
>>>    print(i) 
5 
6 
7 
8 
9 

The fact that ranges are not lists allows us to use very big ranges and not iterate over them all 
at once. For instance, range(0,1000000000) defines a range of a billion numbers that we could 
iterate over, but it doesn’t actually store a billion numbers. It only stores the instructions to 
produce the numbers during an iteration. If you want to turn an iterable like a range into a list, 
all you have to do is convert it with the list function: 

>>> list(range(0,10)) 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

It’s useful to get lists of consecutive integers, so we use the range function a lot. One more note 
about the range function is that some of its arguments are optional. If you call it with only one 
input, it automatically starts from zero and goes up to the input number, and if you provide a 
third argument it counts by that number. For instance, range(10) counts from 0 to 9 and 
range(0,10,3) counts from 0 to 9 in increments of 3: 

>>> list(range(10)) 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
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>>> list(range(0,10,3)) 
[0, 3, 6, 9] 

Another example of a function that returns its own special type of iterable is the zip function. 
The zip function takes two iterables of the same length and returns an iterable consisting of 
pairs of corresponding entries from the first and second iterable: 

>>> z = zip([1,2,3],["a","b","c"]) 
>>> z 
<zip at 0x15fa8104bc8> 
>>> list(z) 
[(1, 'a'), (2, 'b'), (3, 'c')] 

Note that not all iterables support indexing; z[2] is invalid, so you’ll need to convert it to a list 
first (like list(z)[2] instead) to get the third entry of a zip z. (Ranges do support indexing, 
and range(5,10)[3] returns 8.) Be careful: once you’ve iterated through a zip it is no longer 
there! It’s a good idea to convert a zip to a list immediately if you plan to reuse it. 

B.2.3 Generators 

Python’s generators give you a way to create iterables that don’t store all of their values at 
once, but rather store instructions to produce values. This allows us to define large or even 
infinite sequences of values without storing them in memory. Generators can be created in a 
few ways, the most basic of which looks like a function with the keyword yield instead of 
return. The difference is that a generator can yield many values, where as a function returns 
at most once and then is done.  

Here’s a generator representing the infinite sequence of integers beginning 0, 1, 2, 3, and so 
on. The while loop goes forever, and in each loop the variable x is yielded and then incremented 
by 1. 

def count(): 
    x = 0 
    while True: 
        yield x 
        x += 1 

Even though this represents an infinite sequence, you can run count() without blowing up your 
computer. It just returns a generator object, not a complete list of values: 

>>> count() 
<generator object count at 0x0000015FA80EC750> 

A for loop beginning with for x in count() is valid, but runs forever. Here’s an example of 
using this infinite generator in a for loop with a break to escape instead of iterating forever: 

for x in count(): 
    if x > 1000: 
        break 
    else: 
        print(x) 
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Here’s a more practical version of the count generator that only yields finitely many values. It 
works like the range function, starting from the first input value and going up to the second: 

def count(a,b): 
    x = a 
    while x < b: 
        yield x 
        x += 1 

The result of count(10,20) is a generator that is like range(10,20); we can’t see its values 
directly, but we can iterate over it; for instance, in a list comprehension: 

>>> count(10,20) 
<generator object count at 0x0000015FA80EC9A8> 
>>> [x for x in count(10,20)] 
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19] 

We can create generator comprehensions much like list comprehensions by wrapping the 
comprehension code in parentheses instead of brackets. For example, 

(x*x for x in range(0,10)) 

is a generator yielding the squares of numbers from 0 to 9. It’s behavior is the same as the 
generator: 

def squares(): 
    for x in range(0,10): 
        yield x*x 

When a generator is finite, you can safely convert it to a list with the list function: 

>>> list(squares()) 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 

B.2.4 Tuples 

Tuples are iterables that are a lot like lists except that they are immutable; you can’t change 
them once they are created. That means there is no append method on a tuple. In particular, 
once you’ve created a tuple, it always has the same fixed length. That makes them useful for 
storing data that comes in pairs or triples. Tuples are created like lists with the only difference 
being that we use parentheses (or no brackets at all) instead of square brackets: 

>>> (1,2) 
(1, 2) 
>>> ("a","b","c") 
('a', 'b', 'c') 

>>> 1,2,3,4,5 
(1, 2, 3, 4, 5) 

If you look at the zip in section B.2.2 again, you’ll see its entries are actually tuples. Tuples are 
in a sense the default collection in Python. If you write a = 1,2,3,4,5 (without the 
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parentheses), then a is automatically interpreted as a tuple of those numbers. Likewise, if you 
conclude a function with return a,b, the output will actually be the tuple (a,b). 

Tuples are often short, so we often don’t need to iterate over them. There’s no such thing as a 
tuple comprehension, but you can iterate over a tuple in another comprehension and convert 
the result back to a tuple with the built-in tuple function. Here’s something that looks like a 
tuple comprehension, but it’s actually a generator comprehension whose result is passed to the 
tuple function: 

>>> a = 1,2,3,4,5 
>>> tuple(x + 10 for x in a) 
(11, 12, 13, 14, 15) 

B.2.5 Sets 

Python sets are collections where every entry must be distinct, and they do not keep track of 
order. We won’t use sets much in this book, except that turning a list into a set is a quick way 
to guarantee it has no duplicate values. The set function turns an iterable into a set as follows. 

>>> dups = [1,2,3,3,3,3,4,5,6,6,6,6,7,8,9,9,9] 
>>> set(dups) 
{1, 2, 3, 4, 5, 6, 7, 8, 9} 
>>> list(set(dups)) 
[1, 2, 3, 4, 5, 6, 7, 8, 9] 

Python sets are written as a list of entries between curly braces, which incidentally is the same 
way mathematical sets are written. You can define a set from scratch by listing some entries, 
separated by commas and enclosing them in curly braces. Because sets don’t respect order, 
sets are equal if they have exactly the same entries. 

>>> set([1,1,2,2,3]) == {3,2,1} 
True 

B.2.6 NumPy arrays 

The final collection we make extensive use of in this book is not a built-in Python collection; it 
comes from the NumPy package, which is the de-facto standard Python library for numerics 
(efficient number crunching). This collection is the NumPy array, and it’s mostly important 
because of how ubiquitous NumPy is. Many other Python libraries have functions that expect 
NumPy arrays as inputs.  

To use NumPy arrays, make sure you have access to the NumPy library. First, you need to make 
sure NumPy is installed. If you’re using Anaconda as described in appendix A, you should already 
have it. Otherwise, you’ll want to install NumPy with the pip package manager via pip install 
numpy in your terminal. Once NumPy is installed, you need to import it to your Python program. 
The traditional way to import NumPy is with the name np: 

import numpy as np 
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To create a NumPy array, simply pass an iterable to the np.array function: 

>>> np.array([1,2,3,4,5,6]) 
array([1, 2, 3, 4, 5, 6]) 

One NumPy function we use is np.arange, which is like a floating-point version of the built-in 
Python range function. With two arguments, np.arange works the same way as range, 
producing a NumPy array instead of a range object: 

>>> np.arange(0,10) 
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

With a third argument, you can specify a value to count by, which can be a float. The following 
code gives us a NumPy array with values from 0 up to 10 in increments of 0.1, which is 100 
numbers in total:  

>>> np.arange(0,10,0.1) 
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2, 
       1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 
       2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 
       3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 
       5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2, 6.3, 6.4, 
       6.5, 6.6, 6.7, 6.8, 6.9, 7. , 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 
       7.8, 7.9, 8. , 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9. , 
       9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9]) 
>>> len(np.arange(0,10,0.1)) 
100 

B.2.7 Dictionaries 

Dictionaries are collections that work quite differently than lists, tuples, or generators. Instead 
of accessing entries of a dictionary by a numeric index, you can label them with another piece 
of data called a key. At least in this book, keys are most frequently strings. The following code 
defines a dictionary called dog with two keys and corresponding values: the key “name” is 
associated with the string “Melba” and the key “age” is associated with the number 2: 

dog = {"name" : "Melba", "age" : 2} 

To make dictionaries more readable, we often use some extra whitespace and write each key-
value pair on its own line. The following is the same dog dictionary with extra whitespace: 

dog = { 
    "name" : "Melba", 
    "age" : 2 
} 

To access the values of a dictionary, you use a similar syntax as when getting the entries of a 
list, but instead of passing an index, you pass a key: 

>>> dog["name"] 
'Melba' 
>>> dog["age"] 
2 
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If you want to get all the values from a dictionary, you can get an iterable of key-value pair 
tuples using the items method on a dictionary. Dictionaries don’t order their values, so don’t 
expect the result of items to have any particular order. 

>>> list(dog.items()) 
[('name', 'Melba'), ('age', 2)] 

B.2.8 Useful collection functions 

Python comes with a number of useful built-in functions that work with iterables, particularly for 
iterables of numbers. We already saw the length function len, which we will use most frequently, 
as well as the zip function, but there are a few others worth a quick mention. The sum function 
adds up an iterable of numbers, and the max and min functions return the largest and smallest 
values, respectively: 

>>> sum([1,2,3]) 
6 
>>> max([1,2,3]) 
3 
>>> min([1,2,3]) 
1 

The sorted function returns a list that is a sorted copy of an iterable. It’s important to note that 
sorted returns a new list; the order of the original list is unaffected: 

>>> q = [3,4,1,2,5] 
>>> sorted(q) 
[1, 2, 3, 4, 5] 
>>> q 
[3, 4, 1, 2, 5] 

Similarly, the reversed function returns a reversed version of a given iterable, while leaving the 
original iterable’s order unchanged. The result is an iterable but not a list, so you need to convert 
it to see the result: 

>>> q 
[3, 4, 1, 2, 5] 
>>> reversed(q) 
<list_reverseiterator at 0x15fb652eb70> 
>>> list(reversed(q)) 
[5, 2, 1, 4, 3] 

By contrast, if you do want to sort or reverse a list in place, you can use the sort and reverse 
methods like q.sort() or q.reverse(). 

B.3 Working with functions 
Python functions are like mini-programs that take some input values (or possibly none), do 
some computations, and possibly produce an output value. We already used some Python 
functions, like math.sqrt and zip, and saw the outputs they produce for different input values.  
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We can define our own Python functions using the def keyword. The following code defines a 
function called square that takes an input value called x, stores the value x * x in a variable 
called y, and returns the value of y. Like a for loop or if statement, we need to use indentation 
to show which lines belong to the function definition: 

def square(x): 
    y = x * x 
    return y 

The net result of this function is returning the square of the input value: 

>>> square(5) 
25 

This section covers a few of the more advanced ways we use functions in the book. 

B.3.1 Giving functions more inputs 

We can define our function to take as many inputs, or arguments, as we want. The following 
function takes three arguments and adds them together: 

def add3(x,y,z): 
    return x + y + z 

Sometimes it’s useful to have a single function accept a variable number of arguments. For 
instance, we might want to write a single add function where add(2,2) returns 4, add(1,2,3) 
returns 6, and so on. We can do this by adding a star to a single input value, commonly called 
args. The star indicates that we are taking all of the input values and storing them in a tuple 
called args. Then we are free to write logic within our function that iterates over all of the 
arguments. This add function iterates over all arguments it is passed and adds them up, 
returning the total: 

def add(*args): 
    total = 0 
    for x in args: 
        total += x 
    return total 

Then add(1,2,3,4,5) returns 1 + 2 + 3 + 4 + 5 = 15 as desired and add() returns 0. Our add 
function works differently than the sum function from before: sum takes an iterable, while add 
takes the underlying values directly as arguments. Here’s a comparison: 

>>> sum([1,2,3,4,5]) 
15 
>>> add(1,2,3,4,5) 
15 

The * operator has a second application: you can use it to take a list and convert it into 
arguments of a function. For instance, 

>>> p = [1,2,3,4,5] 
>>> add(*p) 
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15 

This is equivalent to evaluating add(1,2,3,4,5). 

B.3.2 Keyword arguments 

Using a starred argument to a function is one way to optional parameters. Another way is to 
pass in named arguments, called keyword arguments. Here’s an example function with two 
optional keyword arguments called name and age, which returns a string containing a birthday 
greeting: 

def birthday(name="friend", age=None): 
    s = "Happy birthday, %s" % name 
    if age: 
        s += ", you're %d years old" % age 
    return s + "!" 

(This function uses the string formatting operator %, which substitutes occurrences of %s with a 
given string and occurrences of %d with a given number.) Because they are keyword arguments, 
both name and age are optional. The name defaults to “friend”, so if we call birthday with no 
arguments, we get a generic greeting: 

>>> birthday() 
'Happy birthday, friend!' 

We can optionally specify a different name instead. The first argument is understood to be the 
name, but we can also make it explicit by setting the name argument directly: 

>>> birthday('Melba') 
'Happy birthday, Melba!' 
>>> birthday(name='Melba') 
'Happy birthday, Melba!' 

The age argument is also optional and defaults to None. We can specify a name and an age, or 
just an age. Because age is the second keyword argument, we need to identify it if we don’t 
provide a name. When all arguments are identified, we can pass them in any order. Here are a 
few examples: 

>>> birthday('Melba', 2) 
"Happy birthday, Melba, you're 2 years old!" 
>>> birthday(age=2) 
"Happy birthday, friend, you're 2 years old!" 
>>> birthday('Melba', age=2) 
"Happy birthday, Melba, you're 2 years old!" 
>>> birthday(age=2,name='Melba') 
"Happy birthday, Melba, you're 2 years old!" 

If you have a lot of arguments, you can package them as a dictionary and pass them to the 
function using the ** operator. This is like the * operator, except instead of passing a list of 
arguments, you pass a dictionary of keyword arguments: 

>>> dog = {"name" : "Melba", "age" : 2} 
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>>> dog 
{'name': 'Melba', 'age': 2} 
>>> birthday(**dog) 
"Happy birthday, Melba, you're 2 years old!" 

When defining your function, you can similarly use the ** operator to process all of the keywords 
supplied to the function as a single dictionary. We can rewrite the birthday function as follows, 
but then we need to specify the names of all of the arguments when calling it: 

def birthday(**kwargs): 
    s = "Happy birthday, %s" % kwargs['name'] 
    if kwargs['age']: 
        s += ", you're %d years old" % kwargs['age'] 
    return s + "!" 

Specifically, the name and age variables are replaced with kwargs[‘name’] and kwargs[‘age’], 
and we can run it either of the following ways: 

>>> birthday(**dog) 
"Happy birthday, Melba, you're 2 years old!" 
>>> birthday(age=2,name='Melba') 
"Happy birthday, Melba, you're 2 years old!" 

B.3.3 Functions as data 

In Python, functions are first-class values, meaning you can assign them to variables, pass them 
to functions, and return functions as the output values of other functions. In other words, Python 
functions look like any other piece of data in Python. In the functional programming paradigm, 
which we introduce in chapter 4, it’s common to have functions that operate on other functions. 
The following function takes two inputs: a function f and a value x and returns the value f(x): 

def evaluate(f,x): 
    return f(x) 

Using the square function from section B.3, evaluate(square,10) should return square(10) 
or 100: 

>>> evaluate(square,10) 
100 

A more useful function that takes a function as input is Python’s map function. The map function 
takes a function and an iterable, and returns a new iterable obtained by applying the function 
to every entry of the original. For instance, the following map applies square to every number 
in range(10). Converting it to a list, we can see the first 10 square numbers: 

>>> map(square,range(10)) 
<map at 0x15fb752e240> 
>>> list(map(square,range(10))) 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 

The evaluate and map functions are examples of functions that take other functions as inputs. 
It’s also possible for a function to return another function as output. The following function, for 
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instance, returns a function that raises a number to some power. Notice, in particular, that a 
full function definition can live inside another function: 

def make_power_function(power): 
     
    def power_function(x): 
        return x ** power 
     
    return power_function 

With this defined, make_power_function(2) returns a function that behaves just like the 
previous square function. Similarly, make_power_function(3) returns a function that cubes its 
input: 

>>> square = make_power_function(2) 
>>> square(2) 
4 
>>> cube = make_power_function(3) 
>>> cube(2) 
8 

When the make_power_function finishes evaluating, the power_function returned still 
remembers the power variable it was passed, even though variables within a function are usually 
gone when the function finishes running. Such a function that remembers outside variables used 
in its definition is called a closure. 

B.3.4 Lambdas: Anonymous functions 

There’s another simpler syntax we can use when creating functions on the fly. The lambda 
keyword allows us to create a function without a name, referred to as an anonymous function 
or a lambda. This name comes from the Greek letter 𝜆𝜆, written lambda and pronounced LAM-
duh, which is the symbol computer scientists used for function definitions in the theory of 
functional programming. To define a function as a lambda, you specify the input variable or 
variables, separated by commas, then a colon, then the return expression for the function. This 
lambda defines a function that takes a single input x and adds 2 to it: 

>>> lambda x: x + 2 
<function __main__.<lambda>(x)> 

You can use a lambda anywhere you use a function, so you can apply it directly to a value as 
follows: 

>>> (lambda x: x + 2)(7) 
9 

Here’s another lambda function taking two input variables and returning the value of the first 
plus twice the value of the second. In this case, the first input is 2 and the second is 3, so the 
output is 2 + 2 · 3 = 8: 

>>> (lambda x,y: x + 2 * y)(2,3) 
8 
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You can also bind a lambda to a name like any function value in Python, although that somewhat 
defeats the purpose of using the anonymous function syntax: 

>>> plus2 = lambda x: x + 2 
>>> plus2(5) 
7 

Lambdas should be used sparingly because if a function does anything interesting, it probably 
deserves a name. One place you might use a lambda is if you’re writing a function that returns 
another function. For instance, the make_power_function can be equivalently implemented with 
a lambda as follows: 

def make_power_function(p): 
    return lambda x: x ** p 

We can see that this function behaves the same way as the original implementation: 

>>> make_power_function(2)(3) 
9 

The name of the outside function makes this clear, and not much is gained by naming the return 
function. It’s also possible to use lambdas as inputs to functions. For instance, if you want to 
add 2 to every number from 0 to 9, you could concisely write: 

map(lambda x: x + 2, range(0,9)) 

To see the data, we again need to convert this result to a list. In most places, however, it’s just 
as concise and more readable to use comprehensions. The equivalent list comprehension is 

[x+2 for x in range(0,9)] 

B.3.5 Applying functions to NumPy arrays 

NumPy has its own versions of some of the built-in Python math functions, which are useful 
because they can be applied to every entry of a NumPy array at once. For instance, np.sqrt is 
a square root function that can either take the square root of a number or a whole NumPy array. 
For instance, np.sqrt(np.arange(0,10)) produces a NumPy array with the square roots of 
integers from 0 to 9: 

>>> np.sqrt(np.arange(0,10)) 
array([0.        , 1.        , 1.41421356, 1.73205081, 2.        , 
       2.23606798, 2.44948974, 2.64575131, 2.82842712, 3.        ]) 

This is not just a shortcut. NumPy actually has an implementation that is faster than iterating 
over the array in Python. If you want to apply a custom function to every entry of a NumPy 
array, you can use the np.vectorize function. Here’s an example that takes a number and 
returns another number: 

def my_function(x): 
    if x % 2 == 0: 
        return x/2 
    else: 
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        return 0 

The following code vectorizes the function and applies it to every entry in the NumPy array: 
np.arange(0,10). 

>>> my_numpy_function = np.vectorize(my_function) 
>>> my_numpy_function(np.arange(0,10)) 
array([0., 0., 1., 0., 2., 0., 3., 0., 4., 0.]) 

B.4 Plotting data with Matplotlib 
Matplotlib is the most popular plotting library in Python. Throughout the book, we use it to create 
plots of data sets, graphs of functions, and drawings of other geometric figures. To avoid library-
specific discussions, I’ve hidden most of Matplotlib’s usage in wrapper functions, so you can 
mainly use those to do all of the exercises and mini-projects. In case you want to dig deeper 
into the implementations, here’s a quick overview of making plots in Matplotlib. You should have 
Matplotlib already installed with Anaconda, or you can manually install it with pip install 
matplotlib. 

B.4.1 Making a scatter plot 

Scatter plots are useful for visualizing a collection of ordered pairs of numbers of the form (x, 
y) as points in the plane (covered in more detail in chapter 2). To create a scatter plot (or any 
plot) with Matplotlib, the first step is to install the library and import it into your Python script. 
It’s traditional to import Matplotlib’s plotting module, pyplot, with the name plt. 

import matplotlib.pyplot as plt 

Say we wanted to make a scatter plot of the points (1, 1), (2, 4), (3, 9), (4, 16), and (5, 25), 
which are pairs of some numbers and their squares. Thinking of these as points of the form (x, 
y), the x values are 1, 2, 3, 4, and 5, and the y values are 1, 4, 9, 16, and 25. To make a scatter 
plot, we use the plt.scatter function, passing first a list of the x values and then a list of the 
y values: 

x_values = [1,2,3,4,5] 
y_values = [1,4,9,16,25] 
plt.scatter(x_values,y_values) 
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Figure B.1: A scatter plot created with the Matplotlib plt.scatter function. 

The horizontal position tells us an x value of a given point and the vertical position tells us a y 
value. Notice that Matplotlib automatically scales the graph area to fit all of the points, so in this 
case, the y scale is bigger than the x scale. 

There are also a few keyword arguments you can use to customize the appearance of your 
scatter plot. For instance, the marker keyword argument sets the shape of the dots on the plot 
and the c keyword argument sets the color of the dots. The following line plots the same data 
with a red “x” for each point instead of the default blue circle: 

plt.scatter(x_values,y_values,marker='x',c='red') 
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Figure B.2: Customizing the appearance of a Matplotlib scatter plot 

The documentation at https://matplotlib.org/ covers all of the possible keyword arguments and 
customizations that are possible with Matplotlib plots. 

B.4.2 Making a line chart 

If we use the Matplotlib plt.plot function instead of the plt.scatter function, our points are 
connected with lines rather than being marked as dots. This is sometimes called a line chart. 
For example, 

plt.plot(x_values,y_values) 
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Figure B.3: Creating a line chart with the Matplotlib plt.plot function 

One useful application of this is specifying only two points to draw a line segment. For instance, 
we could write a function that takes two input (x, y) points as tuples and draws the line segment 
connecting them by extracting their x and y values and then using plt.plot: 

def plot_segment(p1,p2): 
    x1,y1 = p1 
    x2,y2 = p2 
    plt.plot([x1,x2],[y1,y2],marker='o') 

This example also shows that you can set a marker keyword argument for plt.plot to mark 
the individual points in addition to drawing the line: 

point1 = (0,3) 
point2 = (2,1) 
plot_segment(point1,point2) 
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Figure B.4: A function that draws a line segment between two points 

This draw_segment function is an example of a wrapper function; we can now use draw_segment 
any time we want to make a line segment between two (x, y) points, rather than using Matplotlib 
functions. 

Another important use of a line chart is plotting the graph of a function. That is, plotting all of 
the pairs (x, f(x)) for some fixed function f over a range of x values. Theoretically, a smooth, 
continuous graph consists of infinitely many points. We can’t use infinitely many points, but the 
more we use, the more accurate the graph will look. Here’s a plot of f(x) = sin(x) from x = 0 to 
x = 10 with 1,000 points: 

x_values = np.arange(0,10,0.01) 
y_values = np.sin(x_values) 
plt.plot(x_values,y_values) 
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Figure B.5: Using a lot of points, we can approximate a smooth function graph. 

B.4.3 More plot customizations 

As I mentioned, the best way to learn more about customizing your Matplotlib plots is to search 
the documentation at matplotlib.org when you want to accomplish something specific. There are 
a few more important ways to control the appearance of your Matplotlib plots which I’ll mention 
because they appear frequently in the examples in this book. 

The first is setting the scale and size of your plot. You may have noticed that the result of 
plot_segment(point1,point2) was not drawn proportionally. If we want to see our line 
segment plotted to scale, we could explicitly set the x and y bounds for the graph to be the 
same. For instance, this code sets both the x and y bounds to the range from 0 to 5: 

plt.ylim(0,5) 
plt.xlim(0,5) 
plot_segment(point1,point2) 
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Figure B.6: Updating the x and y scales on a plot with x and y bounds 

This is still not quite to scale. One unit on the x-axis is not the same as one unit on the y-axis. 
To make them the same size visually, we need to make our graph a square. This can be done 
with the set_size_inches method. That method actually belongs to the current “figure” object 
that Matplotlib is working with, which we can retrieve with the gcf (get current figure) method 
on plt. The following code draws the line segment in correct proportion in a 5 in.-by-5 in. plot 
area. Depending on your display, it could appear another size, but the proportions should be 
correct:  

plt.ylim(0,5) 
plt.xlim(0,5) 
plt.gcf().set_size_inches(5,5) 
plot_segment(point1,point2) 
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Figure B.7: Drawing with correct proportions by setting the figure size in inches 

The other important customization you can add to your graph is setting labels for the axes and 
for the whole graph. You can add a title to the current graph with the plt.title function, and 
you can add labels to the x- and y-axes with the plt.xlabel and plt.ylabel functions, 
respectively. Here’s an example of adding labels to the graph of the sine function: 

x_values = np.arange(0,10,0.01) 
y_values = np.sin(x_values) 
plt.plot(x_values,y_values) 
plt.title('Graph of sin(x) vs. x',fontsize=16) 
plt.xlabel('this is the x value',fontsize=16) 
plt.ylabel('the value of sin(x)',fontsize=16) 
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Figure B.8: A Matplotlib plot with a title and axis labels. 

B.5 Object-oriented programming in Python 
Object-oriented programming (OOP) is, roughly speaking, the programming paradigm that 
emphasizes organizing your program data with classes. Classes can store values called 
properties as well as functions called methods, which relate data and functionality in a program. 
You don’t need to know much about OOP to appreciate this book, but some mathematical ideas 
do have an object-oriented flavor. In chapters 6 and 10 especially, we use classes and some 
object-oriented design principles to help understand math. This section gives a quick 
introduction to classes and OOP in Python. 

B.5.1 Defining classes 

Let’s work with a concrete example. Suppose you are writing a Python program that deals with 
geometric shapes like a drawing app, for example. One kind of shape you might want to describe 
would be a rectangle. To do this, we define a Rectangle class in Python that describes properties 
of rectangles and then we create instances of this class that represent specific rectangles. 

In Python, a class is defined with the class keyword, and the name of the class is typically 
capitalized, like Rectangle. The indented lines below the name of the class describe the 
properties (values) and methods (functions) associated with the class. The most basic method 
of a class is its constructor, which is a function that allows us to make instances of the class. In 
Python, constructors are given the special name __init__. For a rectangle, we might want to 
describe it by two numbers, representing its height and width. In that case, the __init__ 
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function takes three values: the first represents the new instance of the class we’re building, 
and the next two represent the height and width values. The constructor does the work of setting 
height and width properties of the new instance to the input values. 

class Rectangle(): 
    def __init__(self,w,h): 
        self.width = w 
        self.height = h 

Having created a constructor, we can use the name of the class like a function that takes two 
numbers and returns a Rectangle object. For instance Rectangle(3,4) creates an instance 
with the width property set to 3 and the height property set to 4. Even though the constructor 
is defined with a self argument, you don’t need to include it when you call the constructor. 
With that Rectangle object created, we can access its height and width properties: 

>>> r = Rectangle(3,4) 
>>> type(r) 
__main__.Rectangle 
>>> r.width 
3 
>>> r.height 
4 

B.5.2 Defining methods 

A method is a function associated with a class that lets you compute something about instances 
or gives the instances some kind of functionality. For a rectangle, it would make sense to have 
an area() method that computes the area, which is the height times the width. Like the 
constructor, any method must take a self parameter, which represents the current instance. 
Once again, you don’t need to pass a self parameter to the method; self is automatically 
taken to be the object the method is being called on: 

class Rectangle(): 
    def __init__(self,w,h): 
        self.width = w 
        self.height = h 
     
    def area(self): 
        return self.width * self.height 

To find the area of a rectangle, we can call the area method as follows: 

>>> Rectangle(3,4).area() 
12 

Note that a self parameter is not passed to the function; the instance Rectangle(3,4) is 
automatically taken to be the self value. As another example, we could have a scale method 
that takes a number and returns a new Rectangle object whose dimensions of height and width 
are scaled by that factor from the original. (I’ll start using “...” as a placeholder on the printed 
page to stand-in for code in the Rectangle class that we’ve already written.) 
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class Rectangle(): 
    ... 
    def scale(self, factor): 
        return Rectangle(factor * self.width, factor * self.height) 

Calling Rectangle(2,1) constructs a rectangle with a width of 2 and a height of 1. If we scale 
it by a factor of 3, we get a new rectangle with a width of 6 and a height of 3: 

>>> r = Rectangle(2,1) 
>>> s = r.scale(3) 
>>> s.width 
6 
>>> s.height 
3 

B.5.3 Special methods 

Some methods are either automatically available or have special effects once implemented. For 
instance, the __dict__ method is available by default on every instance of a new class and 
returns a dictionary of all the properties of the instance. With no additional modifications to the 
Rectangle class, we can write: 

>>> Rectangle(2,1).__dict__ 
{'width': 2, 'height': 1} 

Another special method name is __eq__. This method when implemented describes the behavior 
of the == operator on instances of a class, and therefore, decides when two instances are equal. 
Without a custom equality method implemented, different instances of a class are always 
unequal, even if they contain the same data. 

>>> Rectangle(3,4) == Rectangle(3,4) 
False 

For rectangles, we might like to say they are the same if they are geometrically 
indistinguishable, having the same width and the same height. We can implement the __eq__ 
method accordingly. The method takes two arguments, the self argument, as usual, and a 
second argument representing another instance we compare self to: 

class Rectangle(): 
    ... 
    def __eq__(self,other): 
        return self.width == other.width and self.height == other.height 

With this done, Rectangle instances are equal if their heights and widths agree: 

>>> Rectangle(3,4) == Rectangle(3,4) 
True 

Another useful special method is __repr__, which produces a default string representation of 
an object. The following __repr__ method makes it easier to see the width and height of a 
rectangle at first glance: 
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class Rectangle(): 
    ... 
    def __repr__(self): 
        return 'Rectangle (%r by %r)' % (self.width, self.height) 

We can see it work: 

>>> Rectangle(3,4) 
Rectangle (3 by 4) 

B.5.4 Operator overloading 

There are more special methods that we can implement to describe how Python operators should 
behave with instances of a class. Repurposing operators that have an existing meaning to work 
on objects of a new class is called operator overloading. For instance, the __mul__ and __rmul__ 
methods describe how a class behaves with respect to the multiplication operator *, acting on 
the right and left, respectively. For a Rectangle instance r, we might want to write r * 3 or 3 
* r to represent scaling the rectangle by a factor of 3. The following implementations of __mul__ 
and __rmul__ call the scale method we already implemented, producing a new rectangle scaled 
by the given factor: 

class Rectangle(): 
    ... 
    def __mul__(self,factor): 
        return self.scale(factor) 
     
    def __rmul__(self,factor): 
        return self.scale(factor) 

We can see that either 10 * Rectangle(1,2) or Rectangle(1,2) * 10 returns a new Rectangle 
instance with width 10 and height 20: 

>>> 10 * Rectangle(1,2) 
Rectangle (10 by 20) 
>>> Rectangle(1,2) * 10 
Rectangle (10 by 20) 

B.5.5 Class methods 

Methods are functions that can only be run with an existing instance of a class. Another option 
is to create a class method, which is a function attached to the class itself rather than individual 
instances. For a Rectangle class, a class method would contain some functionality that has to 
do with rectangles in general, rather than with a specific rectangle. 

One typical use of a class method is to create an alternative constructor. For instance, we could 
create a class method on the Rectangle class taking a single number as an argument, returning 
a rectangle with height and width both equal to that number. In other words, this class method 
constructs a rectangle that is a square of a given side length. The first argument of a class 
method represents the class itself and is often abbreviated to cls: 

class Rectangle(): 
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    ... 
    @classmethod 
    def square(cls,side): 
        return Rectangle(side,side) 

With this class method implemented, we could write Rectangle.square(5) to get the same 
result as Rectangle(5,5). 

B.5.6 Inheritance and abstract classes 

The last topic in OOP that we use is inheritance. If we say class A inherits from class B, it is like 
saying instances of class A are special cases of class B; they work like instances of class B but 
with some additional or modified functionality. In this case, we also say that A is a subclass of 
B, and that B is a superclass of A. As a simple example, we could create a subclass Square from 
Rectangle that represents squares, while keeping most of the same underlying logic from 
Rectangle. Writing class Square(Rectangle) means that Square is a subclass of Rectangle, 
and the call to super().__init__ runs the superclass (Rectangle) constructor from the Square 
constructor: 

class Square(Rectangle): 
 
    def __init__(self,s): 
        return super().__init__(s,s) 
 
    def __repr__(self): 
        return "Square (%r)" % self.width 

This is all we need to do to define the Square class, and we can use any Rectangle method out 
of the box: 

>> Square(5).area() 
25 

In practice, you might want to re-implement or override some more methods, like scale, which 
by default returns the scaled square as a rectangle. 

One common pattern in OOP is to have two classes inherit from the same abstract base class, 
a class defining some common methods or code but that you could never have an instance of. 
As an example, suppose we had a similar class Circle, representing a circle of a given radius. 
Most of the Circle class implementation is analogous to the Rectangle class. 

from math import pi 
 
class Circle(): 
    def __init__(self, r): 
        self.radius = r 
     
    def area(self): 
        return pi * self.radius * self.radius 
     
    def scale(self, factor): 
        return Circle(factor * self.radius) 
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    def __eq__(self,other): 
        return self.radius == other.radius 
     
    def __repr__(self): 
        return 'Circle (radius %r)' % self.radius 
     
    def __mul__(self,factor): 
        return self.scale(factor) 
     
    def __rmul__(self,factor): 
        return self.scale(factor) 

(Remember from geometry class that the area of a circle of radius r is 𝜋𝜋r2.) If we’re dealing with 
a number of different shapes in our program, we could have both Circle and Rectangle inherit 
from a common Shape class. The concept of a shape is not specific enough that we could create 
an instance of it, so only some of the methods can be implemented. The others are marked as 
abstract methods, meaning they can’t be implemented for a Shape on its own but could be 
implemented for any concrete subclass.  

We can use the following code to create an abstract class in Python. ABC stands for “abstract 
base class,” and ABC is a special base class that any abstract class must inherit from in Python:  

from abc import ABC, abstractmethod 
 
class Shape(ABC): 
    @abstractmethod 
    def area(self): 
        pass 
     
    @abstractmethod 
    def scale(self, factor): 
        pass 
     
    def __eq__(self,other): 
        return self.__dict__ == other.__dict__ 
     
    def __mul__(self,factor): 
        return self.scale(factor) 
     
    def __rmul__(self,factor): 
        return self.scale(factor) 

Equality and the multiplication overloads are fully implemented, with __eq__ checking that all 
the properties of two shapes agree. Area and scale are left to be implemented, and their 
implementations depend on the particular shape we’re working with. 

If we were to reimplement the Rectangle class based on the Shape abstract base class, we 
could start by having it inherit from Shape, while giving it its own constructor: 

class Rectangle(Shape): 
    def __init__(self,w,h): 
        self.width = w 
        self.height = h 
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If we try to instantiate a Rectangle with just this code, we run into an error because the area 
and scale methods are not implemented: 

>>> Rectangle(1,3) 
TypeError: Can't instantiate abstract class Rectangle with abstract methods 
area, scale 

We can include the earlier implementations: 

class Rectangle(Shape): 
    def __init__(self,w,h): 
        self.width = w 
        self.height = h 
         
    def area(self): 
        return self.width * self.height 
     
    def scale(self, factor): 
        return Rectangle(factor * self.width, factor * self.height) 

Once we have these methods whose behavior is rectangle-specific, we have access to all the 
functionality from the Shape base class. For instance, equality and the multiplication operator 
overload behave as expected: 

>>> 3 * Rectangle(1,2) == Rectangle(3,6) 
True 

We can now quickly implement a Circle class, a Triangle class, or a class for any other 2D 
shape, all of which would be unified by their area and shape methods and operator overloads. 
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Loading and rendering 3D Models 

with OpenGL and PyGame 

Beyond chapter 3, when we start writing programs that transform and animate graphics, I use 
OpenGL and PyGame instead of Matplotlib. This appendix provides an overview of how to set up 
a game loop in PyGame and render 3D models in successive frames. The culmination is an 
implementation of a draw_model function that renders a single image of a 3D model like the 
teapot we used in chapter 4. 

The goal of draw_model is to encapsulate the library-specific work, so you don’t have to spend 
a lot of time wrestling with OpenGL. But if you want to understand how the function works, feel 
free to follow along in this appendix and play with the code yourself. Let’s start with our 
octahedron from chapter 3 and recreate it with PyOpenGL, an OpenGL binding for Python and 
PyGame.  

C.1 Recreating the octahedron from chapter 3 
To begin working with the PyOpenGL and PyGame libraries, you need to install them. I 
recommend using pip as follows: 

> pip install PyGame 
> pip install PyOpenGL 

The first thing I’ll show you is how to use these libraries to recreate work we’ve already done, 
rendering a simple 3D object. 

In a new Python file called octahedron.py (which you can find in the source code for appendix 
C), we start with a bunch of imports. The first few come from the two new libraries, PyGame 
and PyOpenGL, and the rest should be familiar from chapter 3. In particular, we’ll continue to 
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use all of the 3D vector arithmetic functions we already built, organized in the file vectors.py in 
the source code for this book. Here’s the import statements: 

import pygame 
from pygame.locals import * 
from OpenGL.GL import * 
from OpenGL.GLU import * 
import matplotlib.cm 
from vectors import * 
from math import * 

While OpenGL has automatic shading capabilities, let’s continue to use our shading mechanism 
from chapter 3. We can use a blue color map from Matplotlib to compute colors for the shaded 
sides of the octahedron: 

def normal(face): 
    return(cross(subtract(face[1], face[0]), subtract(face[2], face[0]))) 
 
blues = matplotlib.cm.get_cmap('Blues') 
 
def shade(face,color_map=blues,light=(1,2,3)): 
    return color_map(1 - dot(unit(normal(face)), unit(light))) 

Next, we have to specify the geometry of the octahedron and the light source. Again, this is the 
same as in chapter 3. 

light = (1,2,3) 
faces = [ 
    [(1,0,0), (0,1,0), (0,0,1)], 
    [(1,0,0), (0,0,-1), (0,1,0)], 
    [(1,0,0), (0,0,1), (0,-1,0)], 
    [(1,0,0), (0,-1,0), (0,0,-1)], 
    [(-1,0,0), (0,0,1), (0,1,0)], 
    [(-1,0,0), (0,1,0), (0,0,-1)], 
    [(-1,0,0), (0,-1,0), (0,0,1)], 
    [(-1,0,0), (0,0,-1), (0,-1,0)], 
] 

Now it’s time for some unfamiliar territory. We’re going to show the octahedron as a PyGame 
game window, which requires a few lines of boilerplate. Here, we start the game, set the window 
size in pixels, and tell PyGame to use OpenGL as the graphics engine: 

pygame.init() 
display = (400,400) #1 
window = pygame.display.set_mode(display,  

                                 DOUBLEBUF|OPENGL) #2 

#1 Asks PyGame to show our graphics in a 400x400 pixel window 
#2 Lets PyGame know that we’re using OpenGL for our graphics and indicates that we want to use a built-in 

optimization called double-buffering, which isn’t important to understand for our purposes 

In our simplified example in section 3.5, we drew the octahedron from the perspective of 
someone looking from a point far up the z-axis. We computed which triangles should be visible 
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to such an observer and projected them to 2D by removing the z-axis. OpenGL has built-in 
functions to configure our perspective even more precisely: 

gluPerspective(45, 1, 0.1, 50.0) 
glTranslatef(0.0,0.0, -5) 
glEnable(GL_CULL_FACE) 
glEnable(GL_DEPTH_TEST) 
glCullFace(GL_BACK) 

For the purpose of learning math, you don’t really need to know what these functions do, but 
I’ll give you a short overview in case you are curious. The call to gluPerspective describes our 
perspective looking at the scene, where we have a 45° viewing angle and an aspect ratio of 1. 
This means the vertical units and the horizontal units display as the same size. As a performance 
optimization, the numbers 0.1 and 50.0 put limits on the z-coordinates that are rendered: no 
objects further than 50.0 units from the observer or closer than 0.1 units will show up. Our use 
of glTranslatef indicates that we’ll observe the scene from 5 units up the z-axis, meaning we 
move the scene down by vector (0, 0, -5). Calling glEnable(GL_CULL_FACE) turns on an OpenGL 
option that automatically hides polygons oriented away from the viewer, saving us some work 
we already did in chapter 3, and glEnable(GL_DEPTH_TEST) ensures that we render polygons 
closer to us on top of those further from us. Finally, glCullFace(GL_BACK) enables an OpenGL 
option that automatically hides polygons that are facing us but that are behind other polygons. 
For the sphere, this wasn’t a problem, but for more complex shapes it can be. 

Finally, we can implement the main code that draws our octahedron. Because our eventual goal 
is to animate objects, we’ll actually write code that draws the object over and over repeatedly. 
These successive drawings, like frames of a movie, show the same octahedron over time. And, 
like any video of any stationary object, the result is indistinguishable from a static picture.   

To render a single frame, we loop through the vectors, decide how to shade them, draw them 
with OpenGL, and update the frame with PyGame. Inside of an infinite while loop, this process 
can be automatically repeated as fast as possible as long as the program runs: 

clock = pygame.time.Clock() #1 
while True: 
    for event in pygame.event.get(): #2 
        if event.type == pygame.QUIT: 
            pygame.quit() 
            quit() 
 
    clock.tick() #3 
    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
    glBegin(GL_TRIANGLES) #4 
    for face in faces: 
        color = shade(face,blues,light) 
        for vertex in face: 
            glColor3fv((color[0],  

                        color[1],  
                        color[2])) #5 

            glVertex3fv(vertex) #6 
    glEnd() 
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    pygame.display.flip() #7 

#1 Initializes a clock to measure the advancement of time for PyGame 
#2 In each iteration, checks the events PyGame receives and quits if the user closes the window 
#3 Indicates to the clock that time should elapse 
#4 Instructs OpenGL that we are about to draw triangles 
#5 For each vertex of each face (triangle), sets the color based on the shading 
#6 Specifies the next vertex of the current triangle 
#7 Indicates to PyGame that the newest frame of the animation is ready and makes it visible 

Running this code, we see a 400x400 pixel PyGame window appear, containing an image that 
looks like the one from chapter 3 (figure C.1). 

 
Figure C.1: The octahedron rendered in a PyGame window. 

If you want to prove that something more interesting is happening, you can include the following 
line at the end of the while True loop: 

    print(clock.get_fps()) 

This prints instantaneous quotes of the rate (in frames per second, or fps) at which PyGame is 
rendering and re-rendering the octahedron. For a simple animation like this, PyGame should 
reach or exceed its default maximum frame rate of 60 fps. 
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But what’s the point of rendering so many frames if nothing changes? Once we include a vector 
transformation with each frame, we see the octahedron move in various ways. For now, we can 
cheat by moving the “camera” with each frame instead of actually moving the octahedron. 

C.2 Changing our perspective 
The glTranslatef function in the previous section tells OpenGL the position from which we 
want to see the 3D scene we’re rendering. Similarly, there is a glRotatef function that lets us 
change the angle at which we observe the scene. Calling glRotatef(theta, x, y, z) rotates 
the whole scene by the angle theta about an axis specified by the vector (x, y, z). 

Let me clarify what I mean by “rotating by an angle about an axis.” You can think of the familiar 
example of the Earth rotating in space. The earth rotates by 360° every day or 15° every hour. 
The axis is the invisible line that the Earth rotates around: it passes through the North and 
South poles—the only two points that aren’t rotating. For the earth, the axis of rotation is not 
directly upright, rather it is tilted by 23.5° (figure C.2). 

 
Figure C.2: A familiar example of an object rotating about an axis. The Earth’s axis of rotation is tilted at 23.5° 
relative to its orbital plane. 

The vector (0, 0, 1) points along the z-axis, so calling glRotatef(30,0,0,1) rotates the scene 
by 30° about the z-axis. Likewise, glRotatef(30,0,1,1) rotates the scene by 30° but, instead, 
about the axis (0, 1, 1), which is 45° tilted between the y- and z-axes. If we call 
glRotatef(30,0,0,1) or glRotatef(30,0,1,1) after glTranslatef(…) in the octahedron 
code, we see the octahedron rotated (figure C.3) 
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Figure C.3: The octahedron as seen from three different rotated perspectives using the glRotatef function 
from OpenGL 

Notice that the shading of the four visible sides of the octahedron in figure C.3 has not changed. 
This is because none of the vectors change: the vertices of the octahedron and the light source 
are all the same! We have only changed the position of the “camera” relative to the octahedron. 
When we actually change the position of the octahedron, we’ll see the shading change too. 

To animate the rotation of the cube, we can call glRotate with a small angle in every frame. 
For instance, if PyGame draws the octahedron at about 60 fps, and we call glRotatef(1,x,y,z) 
in every frame, the octahedron rotates about 60° every second about the axis (x, y, z). Adding 
glRotatef(1,1,1,1) within the infinite while loop before glBegin causes the octahedron to 
rotate by 1° per frame about an axis in the direction (1, 1, 1) as shown in figure C.4. 
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Figure C.4: Every tenth frame of our octahedron rotating at 1° per frame. After 36 frames, the octahedron 
completes a full rotation. 

This rotation rate is only accurate if PyGame draws exactly 60 fps. In the long run, this may not 
be true: if a complex scene requires more than a sixtieth of a second to compute all vectors and 
draw all polygons, the motion actually slows down. To keep the motion of the scene constant 
regardless of the frame rate, we can use PyGame’s clock. 

Let’s say we want our scene to rotate by a full rotation (360°) every 5 seconds. PyGame’s clock 
thinks in milliseconds, which are thousandths of a second. For a thousandth of a second, the 
angle rotated is divided by 1,000: 

degrees_per_second = 360./5 
degrees_per_millisecond = degrees_per_second / 1000 

The PyGame clock we created has a tick() method that both advances the clock and returns 
the number of milliseconds since tick() was last called. This gives us a reliable number of 
milliseconds since the last frame was rendered, and lets us compute the angle that the scene 
should be rotated in that time: 

milliseconds = clock.tick() 
glRotatef(milliseconds * degrees_per_millisecond, 1,1,1) 
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Calling glRotatef like this every frame guarantees that the scene rotates exactly 360° every 5 
seconds. In the file rotate_octahedron.py in the appendix C source code, you can see exactly 
how this code is inserted. 

With the ability to move our perspective over time, we already have better rendering capabilities 
than we developed in chapter 3. Now, we can turn our attention to drawing a more interesting 
shape than an octahedron or a sphere. 

C.3 Loading and rendering the Utah teapot 
As we manually identified the vectors outlining a 2D dinosaur in chapter 2, we could manually 
identify the vertices of any 3D object, organize them into triples representing triangles, and 
build the surface as a list of triangles. Artists who design 3D models have specialized interfaces 
for positioning vertices in space and then saving them to files. In this section, we use a famous 
pre-built 3D model: the Utah teapot. The rendering of this teapot is the Hello World program for 
graphics programmers: a simple, recognizable example for testing. 

The teapot model is saved in the file teapot.off in the source code, where the .off filename 
extension stands for Object File Format. This is a plaintext format, specifying the polygons that 
make up the surface of a 3D object and the 3D vectors that are vertices of the polygon. The 
teapot.off file looks something like what is shown in this listing. 

Listing C.1: A schematic of the teapot.off file 

OFF #1 
480  448  926 #2 
0  0  0.488037 #3 
0.00390625  0.0421881  0.476326 
0.00390625  -0.0421881  0.476326 
0.0107422  0  0.575333 
... 
4 324 306 304 317 #4 
4 306 283 281 304 
4 283 248 246 281 
... 

#1 Indicates that this file follows the Object File Format 
#2 Contains the number of vertices, faces, and edges of the 3D model in that order 
#3 Specifies 3D vectors for each of the vertices, as x-, y-, and z-coordinate values 
#4 Specifies the 448 faces of the model  
 

For the last lines of this file, specifying the faces, the first number of each line tells us what kind 
of polygon the face is. The number 3 indicates a triangle, 4 a quadrilateral, 5 a pentagon, and 
so on. Most of the teapot’s faces turn out to be quadrilaterals. The next numbers on each line 
tell us the indices of the vertices from the previous lines that form the corners of the given 
polygon. 
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In the file teapot.py in the appendix C source code, you’ll find the functions load_vertices() 
and load_polygons() that load the vertices and faces (polygons) from the teapot.off file. The 
first function returns a list of 440 vectors, which are all the vertices for the model. The second 
returns a list of 448 lists, each one containing vectors that are the vertices of one of the 448 
polygons making up the model. Finally, I included a third function, load_triangles(), that 
breaks up the polygons with four or more vertices so that our entire model is built out of 
triangles. 

I’ve left it as a mini-project for you to dig deeper into my code or to try to load the teapot.off 
file as well. For now, I’ll continue with the triangles loaded by teapot.py, so we can get to 
drawing and playing with our teapot more quickly. The other step I skip is organizing the 
PyGame and OpenGL initialization into a function so that we don’t have to repeat it every time 
we draw a model. In draw_model.py, you’ll find the following function: 

def draw_model(faces, color_map=blues, light=(1,2,3)): 
 ... 

It takes the faces of a 3D model (assumed to be correctly oriented triangles), a color map for 
shading, and a vector for the light source, and draws the model accordingly. There are also a 
few more keyword arguments that we introduced in chapters 4 and 5. Like our code to draw the 
octahedron, it draws whatever model is passed in, over and over in a loop. This listing shows 
how I put these together in draw_teapot.py. 

Listing C.2: Loading the teapot triangles and passing those to draw_model 

from teapot import load_triangles 
from draw_model import draw_model 
 
draw_model(load_triangles()) 

The result is an overhead view of a teapot. You can see the circular lid, the handle on the left, 
and the spout on the right (figure C.5). 
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Figure C.5: Rendering the teapot 

Now that we can render a shape that’s more interesting than a simple geometric figure, it’s time 
to play! If you read chapter 4, you learned about the mathematical transformations that you 
can do on all of the vertices of the teapot to move and distort it in 3D space. Here, I’ve also left 
you some exercises if you want to do some guided exploration of the rendering code. 

C.4 Exercises 

 
Exercise C.1: Modify the draw_model function to display the input figure from any rotated perspective. Specifically, 
give the draw_model function a keyword argument glRotatefArgs that provides a tuple of four numbers 
corresponding to the four arguments of glRotatef. With this extra information, add an appropriate call to 
glRotatef within the body of draw_model to execute the rotation. 
Solution: In the source code for this book, see draw_model.py for the solution and draw_teapot_glrotatef.py for an 
example usage. 
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Exercise C.2: If we call glRotatef(1,1,1,1) in every frame, how many seconds does it take for the scene to 
complete a full revolution? 
Solution: The answer depends on the frame rate. This call to glRotatef rotates the perspective by 1° each frame. At 
60 fps, it would rotate 60° per second and complete a full rotation of 360° in 6 seconds. 
 

 
Mini-project C.3: Implement the load_triangles() function shown previously, which loads the teapot from the 
teapot.off file and produces a list of triangles in Python. Each triangle should be specified by three 3D vectors. Then, 
pass your result to draw_model() and confirm that you see the same result. 
Solution: In the source code, you can find load_triangles() implemented in the file teapot.py. (Hint: you can turn 
the quadrilaterals into pairs of triangles by connecting their opposite vertices.) 

 
Indexing four vertices of a quadrilateral, two triangles are formed by vertices 0, 1, 2 and 0, 2, 3, respectively. 
 

 
Mini-project C.4: Animate the teapot by changing the arguments to gluPerspective and glTranslatef. This will 
help you visualize the effects of each of the parameters. 
Solution: In the file animated_octahedron.py in the source code, an example is given for rotating the octahedron by 360 
/ 5 = 72° per second by updating the angle parameter of glRotatef every frame. You can try similar modifications 
yourself with either the teapot or the octahedron. 
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